3,193
Views
3
CrossRef citations to date
0
Altmetric
JSSSPN Award

Nitrogen cycling and management focusing on the central role of soils: a review

ORCID Icon
Pages 514-525 | Received 27 Jul 2022, Accepted 13 Sep 2022, Published online: 19 Sep 2022

References

  • Aber, J. D. 1992. “Nitrogen Cycling and Nitrogen Saturation in Temperate Forest Ecosystems.” Trends in Ecology and Evolution 7: 220–224. doi:10.1016/0169-5347(92)90048-G.
  • Ackerman, D., D. B. Millet, and X. Chen. 2019. “Global Estimates of Inorganic Nitrogen Deposition across Four Decades.” Global Biogeochemical Cycles 33: 100–107. doi:10.1029/2018GB005990.
  • Ainsworth, E. A., and S. P. Long. 2020. “30 Years of Free-air Carbon Dioxide Enrichment (FACE): What Have We Learned about Future Crop Productivity and Its Potential for Adaptation?” Global Change Biology 27: 27–49. doi:10.1111/gcb.15375.
  • Akiyama, H., X. Y. Yan, and K. Yagi. 2006. “Estimations of Emission Factors for Fertilizer-induced Direct N2O Emissions from Agricultural Soils in Japan: Summary of Available Data.” Soil Science and Plant Nutrition 52: 774–787. doi:10.1111/j.1747-0765.2006.00097.x.
  • Arias, P. A., N. Bellouin, E. Coppola, R. G. Jones, G. Krinner, J. Marotzke, V. Naik, et al. 2021. “Technical Summary.” In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, et al., 33–144. Cambridge, United Kingdom and New York: Cambridge University Press.
  • Bai, Z., W. Ma, H. Zhao, M. Guo, O. Oenema, P. Smith, G. Velthof, et al. 2021. “Food and Feed Trade Has Greatly Impacted Global Land and Nitrogen Use Efficiencies over 1961-2017.” Nature Food 2:780–791. doi:10.1038/s43016-021-00351-4.
  • Ban, S., K. Matsuda, K. Sato, and T. Ohizumi. 2016. “Long-term Assessment of Nitrogen Deposition at Remote EANET Sites in Japan.” Atmospheric Environment 146: 70–78. doi:10.1016/j.atmosenv.2016.04.015.
  • Bleeker, A., W. K. Hicks, E. Dentener, J. Galloway, and J. W. Erisman. 2011. “N Deposition as a Threat to the World’s Protected Areas under the Convention on Biological Diversity.” Environmental Pollution 159: 2280–2288. doi:10.1016/j.envpol.2010.10.036.
  • Bobbink, R., K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, et al. 2010. “Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: A Synthesis.” Ecological Applications 20:30–59. doi:10.1890/08-1140.1.
  • Castaldelli, G., N. Colombani, E. Soana, F. Vincenzi, E. A. Fano, and M. Mastrocicco. 2019. “Reactive Nitrogen Losses via Denitrification Assessed in Saturated Agricultural Soils.” Geoderma 337: 91–98. doi:10.1016/j.geoderma.2018.09.018.
  • CCE (Coordination Center for Effects). 2022. “CCE Website.” Accessed 13 July 2022. https://www.umweltbundesamt.de/en/Coordination_Centre_for_Effects
  • Cheng, W. G., A. T. Padre, C. Sato, H. Shiono, S. Hattori, A. Kajihara, M. Aoyama, K. Tawaraya, and K. Kumagai. 2016. “Changes in the Soil C and N Contents, C Decomposition and N Mineralization Potentials in a Rice Paddy after Long-term Application of Inorganic Fertilizers and Organic Matter.” Soil Science and Plant Nutrition 62: 212–219. doi:10.1080/00380768.2016.1155169.
  • Chorover, J., R. Kretzschmar, F. Garcia-Pichel, and D. L. Sparks. 2007. “Soil Biogeochemical Processes within the Critical Zone.” Elements 3: 321–326. doi:10.2113/gselements.3.5.321.
  • Davies‐Barnard, T., and P. Friedlingstein. 2020. “The Global Distribution of Biological Nitrogen Fixation in Terrestrial Natural Ecosystems.” Global Biogeochemical Cycles 34: e2019GB006387. doi:10.1029/2019GB006387.
  • Farquhar, G. D., P. M. Firth, R. Wetselaar, and B. Weir. 1980. “On the Gaseous Exchange of Ammonia between Leaves and the Environment: Determination of the Ammonia Compensation Point.” Plant Physiology 66: 710–714. doi:10.1104/pp.66.4.710.
  • Flechard, C. R., R. S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz, and M. A. Sutton. 2013. “Advances in Understanding, Models and Parameterizations of Biosphere–Atmosphere Ammonia Exchange.” Biogeosciences 10: 5183–5225. doi:10.5194/bg-10-5183-2013.
  • Forsius, M., M. Posch, M. Holmberg, J. Vuorenmaa, S. Kleemola, A. Augustaitis, B. Beudert, et al. 2021. “Assessing Critical Load Exceedances and Ecosystem Impacts of Anthropogenic Nitrogen and Sulphur Deposition at Unmanaged Forested Catchments in Europe.” Science of the Total Environment 753:141791. doi:10.1016/j.scitotenv.2020.141791.
  • Fowler, D., M. Coyle, U. Skiba, M. A. Sutton, J. N. Cape, S. Reis, and L. J. Sheppard. 2013. “The Global Nitrogen Cycle in the Twenty-first Century.” Philosophical Transactions of the Royal Society B 368: 20130164. doi:10.1098/rstb.2013.0164.
  • Galloway, J. N., A. Bleeker, and J. W. Erisman. 2021. “The Human Creation and Use of Reactive Nitrogen: A Global and Regional Perspective.” Annual Review of Environment and Resources 46: 255–288. doi:10.1146/annurev-environ-012420-045120.
  • Groffman, P. M., M. A. Altabet, J. K. Bohlke, K. Butterbach-Bahl, M. B. David, M. K. Firestone, A. E. Giblin, T. M. Kana, L. P. Nielsen, and M. A. Voytek. 2006. “Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem.” Ecological Applications 16: 2091–2122. doi:10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2.
  • Groffman, P. M., C. T. Driscoll, J. Durán, J. L. Campbell, L. M. Christenson, T. J. Fahey, M. C. Fisk, et al. 2018. “Nitrogen Oligotrophication in Northern Hardwood Forests.” Biogeochemistry 141:523–539. doi:10.1007/s10533-018-0445-y.
  • Gu, B. J., L. Zhang, R. van Dingenen, M. Vieno, H. J. M. van Grinsven, X. Zhang, S. Zhang, et al. 2021. “Abating Ammonia Is More Cost-effective than Nitrogen Oxides for Mitigating PM2.5 Air Pollution.” Science 374:758–762. doi:10.1126/science.abf8623.
  • Ha, T. K. T., M. Maeda, T. Fujiwara, H. Nagare, and S. Akao. 2015. “Effects of Soil Type and Nitrate Concentration on Denitrification Products (N2O and N2) under Flooded Conditions in Laboratory Microcosms.” Soil Science and Plant Nutrition 61: 999–1004. doi:10.1080/00380768.2015.1094747.
  • Hasegawa, T., T. Li, X. Yin, Y. Zhu, K. Boote, J. Baker, S. Bregaglio, et al. 2017. “Causes of Variation among Rice Models in Yield Response to CO2 Examined with Free-air CO2 Enrichment and Growth Chamber Experiments.” Scientific Reports 7:14858. doi:10.1038/s41598-017-13582-y.
  • Hasegawa, T., H. Sakai, T. Tokida, H. Nakamura, C. Zhu, Y. Usui, M. Yoshimoto, et al. 2013. “Rice Cultivar Responses to Elevated CO2 at Two Free-air CO2 Enrichment (FACE) Sites in Japan.” Functional Plant Biology 40:148–159. doi:10.1071/FP12357.
  • Hasegawa, T., H. Sakai, T. Tokida, Y. Usui, H. Nakamura, H. Wakatsuki, C. P. Chen, et al. 2019. “A High-yielding Rice Cultivar “Takanari” Shows No N Constraints on CO2 Fertilization.” Frontiers in Plant Science 10. Article 361. doi:10.3389/fpls.2019.00361.
  • Hasukawa, H., Y. Inoda, T. Takayama, K. Takehisa, S. Sudo, H. Akiyama, and J. Yanai. 2021. “Effects of Controlled Release N Fertilizers and Reduced Application Rate on Nitrous Oxide Emissions from Soybean Fields Converted from Rice Paddies.” Soil Science and Plant Nutrition 67: 716–726. doi:10.1080/00380768.2021.2011614.
  • Hayashi, K., E. J. Cooper, M. J. J. E. Loonen, A. W. Kishimoto-Mo, T. Motohka, M. Uchida, and T. Nakatsubo. 2014a. “Potential of Svalbard Reindeer Winter Droppings for Emission/Absorption of Methane and Nitrous Oxide during Summer.” Polar Science 8: 196–206. doi:10.1016/j.polar.2013.11.002.
  • Hayashi, K., A. Hayakawa, H. Akiyama, and K. Yagi. 2009a. “Measurement of Ammonia Emission Using A Dynamic Chamber Technique: A Case Study of Surface-incorporated Manure and Ammonium Sulfate at an Upland Field of Light-colored Andosol.” Soil Science and Plant Nutrition 55: 571–581. doi:10.1111/j.1747-0765.2009.00392.x.
  • Hayashi, K., S. Hiradate, S. Ishikawa, and I. Nouchi. 2008a. “Ammonia Exchange between Rice Leaf Blades and the Atmosphere: Effect of Broadcast Urea and Changes of Xylem Sap and Leaf Apoplastic Ammonium Concentrations.” Soil Science and Plant Nutrition 54: 807–818. doi:10.1111/j.1747-0765.2008.00299.x.
  • Hayashi, K., N. Koga, and N. Fueki. 2011a. “Limited Ammonia Volatilization Loss from Upland Fields of Andosols following Fertilizer Applications.” Agriculture, Ecosystems and Environment 140: 534–538. doi:10.1016/j.agee.2011.01.015.
  • Hayashi, K., N. Koga, and Y. Yanai. 2009b. “Effects of Field-applied Composted Cattle Manure and Chemical Fertilizer on Ammonia and Particulate Ammonium Exchanges at an Upland Field.” Atmospheric Environment 43: 5702–5707. doi:10.1016/j.atmosenv.2009.07.043.
  • Hayashi, K., K. Matsuda, K. Ono, T. Tokida, and T. Hasegawa. 2013. “Amelioration of the Reactive Nitrogen Flux Calculation by a Day/Night Separation in Weekly Mean Air Concentration Measurements.” Atmospheric Environment 79: 462–471. doi:10.1016/j.atmosenv.2013.07.017.
  • Hayashi, K., S. Nishimura, and K. Yagi. 2006. “Ammonia Volatilization from the Surface of a Japanese Paddy Field during Rice Cultivation.” Soil Science and Plant Nutrition 52: 545–555. doi:10.1111/j.1747-0765.2006.00053.x.
  • Hayashi, K., S. Nishimura, and K. Yagi. 2008b. “Ammonia Volatilization from a Paddy Field following Applications of Urea: Rice Plants are Both an Absorber and an Emitter for Atmospheric Ammonia.” Science of the Total Environment 390: 485–494. doi:10.1016/j.scitotenv.2007.10.037.
  • Hayashi, K., and M. Okazaki. 2001. “Acid Deposition and Critical Load Map of Tokyo.” Water, Air and Soil Pollution 130: 1211–1216. doi:10.1023/A:1013960630058.
  • Hayashi, K., K. Ono, M. Kajiura, S. Sudo, S. Yonemura, A. Fushimi, K. Saito, Y. Fujitani, and K. Tanabe. 2014b. “Trace Gas and Particle Emissions from Open Burning of Three Cereal Crop Residues: Increase in Residue Moistness Enhances Emissions of Carbon Monoxide, Methane, and Particulate Organic Carbon.” Atmospheric Environment 95: 36–44. doi:10.1016/j.atmosenv.2014.06.023.
  • Hayashi, K., K. Ono, K. Matsuda, T. Tokida, and T. Hasegawa. 2017. “Characteristics of Atmosphere–Rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan.” Asian Journal of Atmospheric Environment 11: 202–216. doi:10.5572/ajae.2017.11.3.202.
  • Hayashi, K., H. Shibata, A. Oita, K. Nishina, A. Ito, K. Katagiri, J. Shindo, and W. Winiwarter. 2021a. “Nitrogen Budgets in Japan from 2000 to 2015: Decreasing Trend of Nitrogen Loss to the Environment and the Challenge to Further Reduce Nitrogen Waste.” Environmental Pollution 286: 117559. doi:10.1016/j.envpol.2021.117559.
  • Hayashi, K., Y. Shimomura, S. Morimoto, M. Uchida, T. Nakatsubo, and M. Hayatsu. 2016a. “Characteristics of Ammonia Oxidation Potentials and Ammonia Oxidizers in Mineral Soil under Salix polaris–Moss Vegetation in Ny-ålesund, Svalbard.” Polar Biology 39: 725–741. doi:10.1007/s00300-015-1829-2.
  • Hayashi, K., Y. Tanabe, N. Fujitake, M. Kida, Y. Wang, M. Hayatsu, and S. Kudoh. 2020. “Ammonia Oxidation Potentials and Ammonia Oxidizers of Lichen–Moss Vegetated Soils at Two Ice-free Areas in East Antarctica.” Microbes and Environments 35: ME19126. doi:10.1264/jsme2.ME19126.
  • Hayashi, K., Y. Tanabe, K. Ono, M. J. J. E. Loonen, M. Asano, H. Fujitani, T. Tokida, M. Uchida, and M. Hayatsu. 2018. “Seabird-affected Taluses are Denitrification Hotspots and Potential N2O Emitters in the High Arctic.” Scientific Reports 8: 17261. doi:10.1038/s41598-018-35669-w.
  • Hayashi, K., T. Tokida, M. Arai, H. Sakai, H. Nakamura, and T. Hasegawa. 2021b. “Fertilizer-derived Nitrogen Use of Two Varieties of Single-crop Paddy Rice: A Free-air Carbon Dioxide Enrichment Study Using Polymer-coated 15N-labeled Urea.” Soil Science and Plant Nutrition 68: 41–52. doi:10.1080/00380768.2021.2003163.
  • Hayashi, K., T. Tokida, and T. Hasegawa. 2011b. “Potential Ammonia Emission from Flag Leaves of Paddy Rice (Oryza Sativa L. Cv. Koshihikari).” Agriculture, Ecosystems and Environment 144: 117–123. doi:10.1016/j.agee.2011.07.012.
  • Hayashi, K., T. Tokida, and T. Hasegawa. 2016b. “FACEing up to Future Uncertainty: Free-airCO2 Enrichment Experiments in Japanese Rice Ecosystems.” In The Challenges of Agro-Environmental Research in Monsoon Asia, edited by K. Yagi and C. G. Kuo, 93–114. Tsukuba: National Institute for Agro-Environmental Sciences.
  • Hayashi, K., T. Tokida, M. Kajiura, Y. Yanai, and M. Yano. 2015. “Cropland Soil–plant Systems Control Production and Consumption of Methane and Nitrous Oxide and Their Emissions to the Atmosphere.” Soil Science and Plant Nutrition 61: 2–33. doi:10.1080/00380768.2014.994469.
  • Hayashi, K., T. Tokida, M. Y. Matsushima, K. Ono, H. Nakamura, and T. Hasegawa. 2014c. “Free-air CO2 Enrichment (FACE) Net Nitrogen Fixation Experiment at a Paddy Soil Surface under Submerged Conditions.” Nutrient Cycling in Agroecosystems 98: 57–69. doi:10.1007/s10705-013-9595-4.
  • Hayashi, K., and X. Yan. 2010. “Airborne Nitrogen Load in Japanese and Chinese Agroecosystems.” Soil Science and Plant Nutrition 56: 2–18. doi:10.1111/j.1747-0765.2009.00423.x.
  • Hayatsu, M., C. Katsuyama, and K. Tago. 2021. “Overview of Recent Researches on Nitrifying Microorganisms in Soil.” Soil Science and Plant Nutrition 67: 619–632. doi:10.1080/00380768.2021.1981119.
  • Houlton, B. Z., S. L. Morford, and R. A. Dahlgren. 2018. “Convergent Evidence for Widespread Rock Nitrogen Sources in Earth’s Surface Environment.” Science 360: 58–62. doi:10.1126/science.aan4399.
  • Husted, S., M. Mattsson, and J. K. Schjoerring. 1996. “Ammonia Compensation Points in Two Cultivars of Hordeum Vulgare L. during Vegetative and Generative Growth.” Plant, Cell and Environment 19: 1299–1306. doi:10.1111/j.1365-3040.1996.tb00008.x.
  • Husted, S., J. K. Schjoerring, T. Nielsen, E. Nemitz, and M. A. Sutton. 2000. “Stomatal Compensation Points for Ammonia in Oilseed Rape Plants under Field Conditions.” Agricultural and Forest Meteorology 105: 371–383. doi:10.1016/S0168-1923(00)00204-5.
  • Ims, R. A., I. G. Alsos, E. Fuglei, Å. Ø. Pedersen, and N. G. Yoccoz. 2014. “An Assessment of MOSJ: The State of the Terrestrial Environment in Svalbard.” Report Series 144, Norwegian Polar Institute, Tromsø, 42.
  • Itahashi, S., K. Hayashi, S. Takeda, Y. Umezawa, K. Matsuda, T. Sakurai, and I. Uno. 2021. “Nitrogen Burden from Atmospheric Deposition Process in East Asian Oceans in 2010 Based on the High-resolution Regional Numerical Modeling.” Environmental Pollution 286: 117309. doi:10.1016/j.envpol.2021.117309.
  • Katata, G., K. Hayashi, K. Ono, H. Nagai, A. Miyata, and M. Mano. 2013. “Coupling Atmospheric Ammonia Exchange Process over a Rice Paddy Field with a Multi-layer Atmosphere–Soil–Vegetation Model.” Agricultural and Forest Meteorology 180: 1–21. doi:10.1016/j.agrformet.2013.05.001.
  • Katsuyama, C., H. Nashimoto, K. Nagaosa, T. Ishibashi, K. Furuta, T. Kinoshita, H. Yoshikawa, et al. 2013. “Occurrence and Potential Activity of Denitrifiers and Methanogens in Groundwater at 140 M Depth in Pliocene Diatomaceous Mudstone of Northern Japan.” FEMS Microbiology Ecology 86:532–543. doi:10.1111/1574-6941.12179.
  • Kondo, M., and T. Yoneyama. 1990. “Recent Achievement in Research on Biological Fixation of Nitrogen 2.” Nogyo Oyobi Engei (Agriculture and Horticulture) 65: 863–870. [in Japanese].
  • Kumazawa, K. 2002. “Nitrogen Fertilization and Nitrate Pollution in Groundwater in Japan: Present Status and Measure for Sustainable Agriculture.” Nutrient Cycling in Agroecosystems 63: 129–137. doi:10.1023/A:1021198721003.
  • Lassaletta, L., G. Billen, B. Grizzetti, J. Anglade, and J. Garnier. 2014a. “50 Year Trends in Nitrogen Use Efficiency of World Cropping Systems: The Relationship between Yield and Nitrogen Input to Cropland.” Environmental Research Letters 9: 105011. doi:10.1088/1748-9326/9/10/105011.
  • Lassaletta, L., G. Billen, B. Grizzetti, J. Garnier, A. M. Leach, and J. N. Galloway. 2014b. “Food and Feed Trade as a Driver in the Global Nitrogen Cycle: 50-year Trends.” Biogeochemistry 118: 225–241. doi:10.1007/s10533-013-9923-4.
  • Leach, A. M., J. N. Galloway, A. Bleeker, J. W. Erisman, R. Kohn, and J. Kitzes. 2012. “A Nitrogen Footprint Model to Help Consumers Understand Their Role in Nitrogen Losses to the Environment.” Environmental Development 1: 40–66. doi:10.1016/j.envdev.2011.12.005.
  • Leip, A., B. Achermann, G. Billen, A. Bleeker, A. F. Bouwman, W. de Vries, and U. Dragosits. 2011. “Integrating Nitrogen Fluxes at the European Scale.” In The European Nitrogen Assessment, edited by M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, et al., 345–376. Cambridge, UK and New York: Cambridge University Press.
  • Lian, Z. M., W. Ouyang, H. Liu, D. Zhang, and L. Liu. 2021. “Ammonia Volatilization Modeling Optimization for Rice Watersheds under Climatic Differences.” Science of the Total Environment 767: 144710. doi:10.1016/j.scitotenv.2020.144710.
  • Li, X., L. Xia, and X. Yan. 2014. “Application of Membrane Inlet Mass Spectrometry to Directly Quantify Denitrification in Flooded Rice Paddy Soil.” Biology and Fertility of Soils 50: 891–900. doi:10.1007/s00374-014-0910-2.
  • Mahmud, K., S. Makaju, R. Ibrahim, and A. Missaoui. 2020. “Current Progress in Nitrogen Fixing Plants and Microbiome Research.” Plants 9: 97. doi:10.3390/plants9010097.
  • Mastrocicco, M., N. Colombani, and G. Castaldelli. 2019. “Direct Measurement of Dissolved Dinitrogen to Refine Reactive Modelling of Denitrification in Agricultural Soils.” Science of the Total Environment 647: 134–140. doi:10.1016/j.scitotenv.2018.07.428.
  • Masuda, Y., T. Matsumoto, K. Isobe, and K. Senoo. 2019. “Denitrification in Paddy Soil as a Cooperative Process of Different Nitrogen Oxide Reducers, Revealed by Metatranscriptomic Analysis of Denitrification-induced Soil Microcosm.” Soil Science and Plant Nutrition 65: 342–345. doi:10.1080/00380768.2019.1622401.
  • Masuda, Y., Y. Shiratori, H. Ohba, T. Ishida, R. Takano, S. Satoh, W. Shen, N. Gao, H. Itoh, and K. Senoo. 2021. “Enhancement of the Nitrogen-fixing Activity of Paddy Soils Owing to Iron Application.” Soil Science and Plant Nutrition 67: 243–247. doi:10.1080/00380768.2021.1888629.
  • Matsui, K., Y. Takata, Y. Maejima, H. Kubotera, H. Obara, and Y. Shirato. 2021. “Soil Carbon and Nitrogen Stock of the Japanese Agricultural Land Estimated by the National Soil Monitoring Database (2015–2018).” Soil Science and Plant Nutrition 67: 633–642. doi:10.1080/00380768.2021.2000324.
  • Matsunaga, M., J. Shimada, K. Mikami, T. Hosono, M. Kagabu, and K. Iwasa. 2015. “Nitrate Concentration and Its Natural Attenuation Process in the Groundwater: The Case Study at the Miyakonojo Basin.” Journal of Groundwater Hydrology 57: 277–293. [in Japanese with English abstract]. doi:10.5917/jagh.57.277.
  • Matsuyama, N., M. Saigusa, and K. Kudo. 1999. “Acidity of Japanese Cultivated Andosols and Significance of Exchange Acidity y1 in Their Classification.” Japanese Journal of Soil Science and Plant Nutrition 70: 754–761. [in Japanese with English abstract].
  • Meredith, M., M. Sommerkorn, S. Cassotta, C. Derksen, A. Ekaykin, A. Hollowed, G. Kofinas, et al. 2019. “Polar Regions.” In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, et al., 203–320. Cambridge, UK and New York: Cambridge University Press.
  • Miyazawa, S., K. Hayashi, H. Nakamura, T. Hasegawa, and M. Miyao. 2014. “Elevated CO2 Decreases the Photorespiratory NH3 Production but Does Not Decrease the NH3 Compensation Point in Rice Leaves.” Plant and Cell Physiology 55: 1582–1591. doi:10.1093/pcp/pcu088.
  • MOE (Ministry of the Environment, Government of Japan). 2022. “Calculation Methods of Greenhouse Gas Emissions and Absorption.” [in Japanese]. Accessed 1 July 2022. https://www.env.go.jp/earth/ondanka/ghg-mrv/methodology/index.html
  • Mogollón, J. M., L. Lassaletta, A. H. W. Beusen, H. J. M. van Grinsven, H. Westhoek, and A. F. Bouwman. 2018. “Assessing Future Reactive Nitrogen Inputs into Global Croplands Based on the Shared Socioeconomic Pathways.” Environmental Research Letters 13: 044008. doi:10.1088/1748-9326/aab212.
  • Morimoto, S., M. Hayatsu, Y. T. Hoshino, K. Nagaoka, M. Yamazaki, T. Karasawa, M. Takenaka, and H. Akiyama. 2011. “Quantitative Analyses of Ammonia-oxidizing Archaea (AOA) and Ammonia-oxidizing Bacteria (AOB) in Fields with Different Soil Types.” Microbes and Environments 26: 248–253. doi:10.1264/jsme2.ME11127.
  • Morino, Y., T. Ohara, J. Kurokawa, M. Kuribayashi, I. Uno, and H. Hara. 2011. “Temporal Variations of Nitrogen Wet Deposition across Japan from 1989 to 2008.” Journal of Geophysical Research 116: D06307. doi:10.1029/2010jd015205.
  • Mulder, A., A. A. van de Graaf, L. A. Robertson, and J. G. Kuenen. 1995. “Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor.” FEMS Microbiology Ecology 16: 177–183. doi:10.1016/0168-6496(94)00081-7.
  • Nakao, A., F. Masai, N. Timbas, S. Medina, S. S. Abe, S. Tanaka, and J. Yanai. 2021. “Changes in Lowland Paddy Soil Fertility in the Philippines after 50 Years of the Green Revolution.” Soil Science and Plant Nutrition 67 (4): 446–459. doi:10.1080/00380768.2021.1947118.
  • Nansai, K., S. Tohno, S. Chatani, K. Kanemoto, S. Kagawa, Y. Kondo, W. Takayanagi, and M. Lenzen. 2021. “Consumption in the G20 Nations Causes Particulate Air Pollution Resulting in Two Million Premature Deaths Annually.” Nature Communications 12: 6286. doi:10.1038/s41467-021-26348-y.
  • Nilsson, J., and P. Grennfelt. 1988. Reprint of the Workshop Report on Critical Loads for Sulphur and Nitrogen. Stockholm: Nordic Council on Ministers.
  • Nishina, K., M. Watanabe, M. K. Koshikawa, T. Takamatsu, Y. Morino, T. Nagashima, K. Soma, and S. Hayashi. 2017. “Varying Sensitivity of Mountainous Streamwater Baseflow NO3– Concentrations to N Deposition in the Northern Suburbs of Tokyo.” Scientific Reports 7: 7701. doi:10.1038/s41598-017-08111-w.
  • OECD (Organisation for Economic Cooperation and Development). 2022. “Agri-Environmental Indicators: Nitrogen Balance.” Accessed 1 July 2022. https://stats.oecd.org/Index.aspx
  • Ohte, N., M. J. Mitchell, H. Shibata, N. Tokuchi, H. Toda, and G. Iwatsubo. 2001. “Comparative Evaluation on Nitrogen Saturation of Forest Catchments in Japan and Northeastern United States.” Water, Air and Soil Pollution 130: 649–654. doi:10.1023/A:1013804728336.
  • Oita, A., A. Malik, K. Kanemoto, A. Geschke, S. Nishijima, and M. Lenzen. 2016. “Substantial Nitrogen Pollution Embedded in International Trade.” Nature Geoscience 9: 111–115. doi:10.1038/ngeo2635.
  • Orui, K., and M. J. Mitchell. 1997. “Nitrogen Saturation in Japanese Forested Watersheds.” Ecological Applications 7: 39–401. doi:10.1890/1051-0761(1997)007[0391:NSIJFW]2.0.CO;2.
  • Osaka, K., N. Ohte, K. Koba, C. Yoshimizu, M. Katsuyama, M. Tani, I. Tayasu, and T. Nagata. 2010. “Hydrological Influences on Spatiotemporal Variations of δ15N and δ18O of Nitrate in a Forested Headwater Catchment in Central Japan: Denitrification Plays a Critical Role in Groundwater.” Journal of Geophysical Research 115: G02021. doi:10.1029/2009JG000977.
  • Parry, M. L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fisher. 2004. “Effects of Climate Change on Global Food Production under SRES Emissions and Socio-economic Scenarios.” Global Environmental Change 14: 53–67. doi:10.1016/j.gloenvcha.2003.10.008.
  • Pedersen, Å. Ø., P. Convey, K. K. Newsham, J. B. Mosbacher, E. Fuglei, V. Ravolainen, A. Augusti, et al. 2022. “Five Decades of Terrestrial and Freshwater Research at Ny-ålesund, Svalbard: Current Status and Knowledge Gaps.” Polar Research 41:6310. doi:10.33265/polar.v41.6310.
  • Quemada, M., L. Lassaletta, L. S. Jensen, O. Godinot, F. Brentrup, C. Buckley, S. Foray, et al. 2020. “Exploring Nitrogen Indicators of Farm Performance among Farm Types across Several European Case Studies.” Agricultural Systems 177:102689. doi:10.1016/j.agsy.2019.102689.
  • Ravindra, K., T. Singh, and S. Mor. 2019. “Emissions of Air Pollutants from Primary Crop Residue Burning in India and Their Mitigation Strategies for Cleaner Emissions.” Journal of Cleaner Production 208: 261–273. doi:10.1016/j.jclepro.2018.10.031.
  • Reisinger, A. J., J. L. Tank, T. J. Hoellein, and R. O. Hall Jr. 2016. “Sediment, Water Column, and Open-channel Denitrification in Rivers Measured Using Membrane-inlet Mass Spectrometry.” Journal of Geophysical Research: Biogeosciences 121: 1258–1274. doi:10.1002/2015JG003261.
  • Rho, H., S. L. Doty, and S. H. Kim. 2020. “Endophytes Alleviate the Elevated CO2-dependent Decrease in Photosynthesis in Rice, Particularly under Nitrogen Limitation.” Journal of Experimental Botany 71: 707–718. doi:10.1093/jxb/erz440.
  • RIHN (Research Institute for Humanity and Nature). 2022. “Towards Sustainable Nitrogen Use Connecting Human Society and Nature.” Prospectus 2022-2023, RIHN, Kyoto.
  • Saijo, T., ed. 2020. Future Design: Incorporating Preferences of Future Generations for Sustainability. Singapore: Springer.
  • Saijo, T. 2021. “Future Forebearers.” RSA Journal Issue 3 2021 , no. : 41–43.
  • Sato, Y., H. Ohta, T. Yamagishi, Y. Guo, T. Nishizawa, M. H. Rahman, H. Kuroda, et al. 2012. “Detection of Anammox Activity and 16S rRNA Genes in Ravine Paddy Field Soil.” Microbes and Environments 27:316–319. doi:10.1264/jsme2.me11330.
  • Schjoerring, J. K., S. Husted, G. Mäck, K. H. Nielsen, J. Finnemann, and M. Mattsson. 2000. “Physiological Regulation of Plant–Atmosphere Ammonia Exchange.” Plant and Soil 221: 95–102. doi:10.1023/A:1004761931558.
  • Schleussner, C.-F., D. Deryng, C. Müller, J. Elliott, F. Saeed, C. Folberth, W. Liu, et al. 2018. “Crop Productivity Changes in 1.5°C and 2°C Worlds under Climate Sensitivity Uncertainty.” Environmental Research Letters 13:064007. doi:10.1088/1748-9326/aab63b.
  • Senga, Y., T. Sato, M. Kuroiwa, S. Nohara, and Y. Suwa. 2019. “Anammox and Denitrification in the Intertidal Sediment of the Hypereutrophic Yatsu Tidal Flat, Japan.” Estuaries and Coasts 42: 665–674. doi:10.1007/s12237-019-00520-6.
  • Shibata, H., J. N. Galloway, A. Leach, L. R. Cattaneo, L. C. Noll, J. W. Erisman, B. Gu B, et al. 2016. “Nitrogen Footprints: Regional Realities and Options to Reduce Nitrogen Loss to the Environment.” Ambio 46:129–142. doi:10.1007/s13280-016-0815-4.
  • Shibata, H., K. Kuraji, H. Toda, and K. Sasa. 2001. “Regional Comparison of Nitrogen Export to Japanese Forest Streams.” The Scientific World Journal 1: 572–580. doi:10.1100/tsw.2001.371.
  • Shindo, J., A. K. Bregt, and T. Hakamata. 1995. “Evaluation of Estimation Methods and Base Data Uncertainties for Critical Loads of Acid Deposition in Japan.” Water, Air and Soil Pollution 85: 2571–2576. doi:10.1007/BF01186221.
  • Shinoda, R., Z. Bao, and K. Minamisawa. 2019. “CH4 Oxidation-dependent 15N2 Fixation in Rice Roots in a Low-nitrogen Paddy Field and in Methylosinus Sp. Strain 3S-1 Isolated from the Roots.” Soil Biology and Biochemistry 132: 40–46. doi:10.1016/j.soilbio.2019.01.021.
  • Soper, F. M., C. Simon, and V. Jauss. 2021a. “Measuring Nitrogen Fixation by the Acetylene Reduction Assay (ARA): Is 3 the Magic Ratio?” Biogeochemistry 152: 345–351. doi:10.1007/s10533-021-00761-3.
  • Soper, F. M., B. N. Taylor, J. B. Winbourne, M. C. Y. Wong, K. A. Dynarski, C. R. G. Reis, M. B. Peoples, et al. 2021b. “A Roadmap for Sampling and Scaling Biological Nitrogen Fixation in Terrestrial Ecosystems.” Methods in Ecology and Evolution 12:1122–1137. doi:10.1111/2041-210x.13586.
  • Sutton, M. A., C. M. Howard, T. K. Adhya, E. Baker, J. Baron, A. Basir, W. Brownlie, et al. 2019. “Nitrogen – Grasping the Challenge: A Manifesto for Science-in-Action through the International Nitrogen Management System.” Summary Report, Centre for Ecology and Hydrology, Edinburgh.
  • Sutton, M. A., C. M. Howard, D. R. Kanter, L. Lassaletta, A. Moring, N. Raghuram, and N. Read. 2021. “The Nitrogen Decade: Mobilizing Global Action on Nitrogen to 2030 and Beyond.” One Earth 4: 10–14. doi:10.1016/j.oneear.2020.12.016.
  • Takata, Y., M. Nakai, and H. Obara. 2009. “Digital Soil Map of Japanese Croplands in 1992.” Japanese Journal of Soil Science and Plant Nutrition 80: 502–505. [in Japanese].
  • Tian, H. Q., R. T. Xu, J. G. Canadell, R. L. Thompson, W. Winiwarter, P. Suntharalingam, E. A. Davidson, et al. 2020. “A Comprehensive Quantification of Global Nitrous Oxide Sources and Sinks”. Nature 586: 248–256. doi:10.1038/s41586-020-2780-0.
  • Tomiyama, H., K. Tanabe, S. Chatani, S. Kobayashi, Y. Fujitani, A. Furuyama, K. Sato, et al. 2017. “Observation for Temporal Open Burning Frequency and Estimation for Daily Emissions Caused by Open Burning of Rice Residue.” Journal of Japan Society for Atmospheric Environment 52:105–117. doi:10.11298/taiki.52.105.
  • UNEP. 2019. “The Nitrogen Fix: From Nitrogen Cycle Pollution to Nitrogen Circular Economy.” In Frontiers 2018/19. Nairobi: UNEP 52–64 .
  • UNEP (United Nations Environment Programme). 2022. “Resolution on Sustainable Nitrogen Management.” UNEP/EA.5/Res.2, UNEP, Nairobi.
  • Uwizeye, A., I. J. M. de Boer, C. I. Opio, R. P. O. Schulte, A. Falcucci, G. Tempio, F. Teillard, et al. 2020. “Nitrogen Emissions along Global Livestock Supply Chains.” Nature Food 1:437–446. doi:10.1038/s43016-020-0113-y.
  • Wang, C., K. Cheng, C. Ren, H. Liu, J. Sun, S. Reis, S. Yin, J. Xu, and B. Gu. 2021. “An Empirical Model to Estimate Ammonia Emission from Cropland Fertilization in China.” Environmental Pollution 288: 117982. doi:10.1016/j.envpol.2021.117982.
  • Watanabe, I., and P. A. Roger. 1984. “Nitrogen Fixation in Wetland Rice Fields.” In Current Development in Biological Nitrogen Fixation, edited by N. S. Subba Rao, 237–276. Oxford, New Delhi, Bombay and Calcutta: IBH Publishing.
  • Wu, H., Y. Li, Z. Xie, J. Sun, P. Smith, K. Cheng, P. Fan, Q. Yue, and G. Pan. 2021. “Estimating Ammonia Emissions from Cropland in China Based on the Establishment of Agro-region-specific Models.” Agricultural and Forest Meteorology 303: 108373. doi:10.1016/j.agrformet.2021.108373.
  • Wu, Q., C. Zhang, X. Liang, C. Zhu, T. Wang, and J. Zhang. 2020. “Elevated CO2 Improved Soil Nitrogen Mineralization Capacity of Rice Paddy.” Science of the Total Environment 710: 136438. doi:10.1016/j.scitotenv.2019.136438.
  • Xia, L., X. Li, Q. Ma, S. K. Lam, B. Wolf, R. Kiese, K. Butterbach-Bahl, D. Chen, Z. Li, and X. Yan. 2020. “Simultaneous Quantification of N2, NH3 and N2O Emissions from a Flooded Paddy Field under Different N Fertilization Regimes.” Global Change Biology 26: 2292–2303. doi:10.1111/gcb.14958.
  • Xin, J., Y. Liu, F. Chen, Y. Duan, G. Wei, X. Zheng, and M. Li. 2019. “The Missing Nitrogen Pieces: A Critical Review on the Distribution, Transformation, and Budget of Nitrogen in the Vadose Zone–Groundwater System.” Water Research 165: 114977. doi:10.1016/j.watres.2019.114977.
  • Yamaga, S., S. Ban, M. Xu, T. Sakurai, S. Itahashi, and K. Matsuda. 2021. “Trends of Sulfur and Nitrogen Deposition from 2003 to 2017 in Japanese Remote Areas.” Environmental Pollution 289: 117842. doi:10.1016/j.envpol.2021.117842.
  • Yamashita, N., H. Sase, and J. Kurokawa. 2022. “Assessing Critical Loads and Exceedances for Acidification and Eutrophication in the Forests of East and Southeast Asia: A Comparison with EANET Monitoring Data.” Science of the Total Environment 851 (Part 2): 158054. doi:10.1016/j.scitotenv.2022.158054.
  • Yoshinaga, I., T. Amano, T. Yamagishi, K. Okada, S. Ueda, Y. Sako, and Y. Suwa. 2011. “Distribution and Diversity of Anaerobic Ammonium Oxidation (Anammox) Bacteria in the Sediment of a Eutrophic Freshwater Lake, Lake Kitaura, Japan.” Microbes and Environments 26: 189–197. doi:10.1264/jsme2.me10184.
  • Zhan, X., W. Adalibieke, X. Cui, W. Winiwarter, S. Reis, L. Zhang, Z. Bai, Q. Wang, W. Huang, and F. Zhou. 2021. “Improved Estimates of Ammonia Emissions from Global Croplands.” Environmental Science and Technology 55: 1329–1338. doi:10.1021/acs.est.0c05149.
  • Zhan, X., C. Chen, Q. Wang, F. Zhou, K. Hayashi, X. Ju, S. Lam, et al. 2019. “Improved Jayaweera-Mikkelsen Model to Quantify Ammonia Volatilization from Rice Paddy Fields in China.” Environmental Science and Pollution Research 26:8136–8147. doi:10.1007/s11356-019-04275-2.
  • Zhang, L. M., M. Wang, J. I. Prosser, Y. M. Zheng, and J. Z. He. 2009. “Altitude Ammonia-oxidizing Bacteria and Archaea in Soils of Mount Everest.” FEMS Microbiology Ecology 70: 208–217. doi:10.1111/j.1574-6941.2009.00775.x.
  • Zhang, X., T. Zou, L. Lassaletta, N. D. Mueller, F. N. Tubiello, M. D. Lisk, C. Lu, et al. 2021. “Quantification of Global and National Nitrogen Budgets for Crop Production.” Nature Food 2:529–540. doi:10.1038/s43016-021-00318-5.
  • Zheng, M., Z. Zhou, P. Zhao, Y. Luo, Q. Ye, K. Zhang, L. Song, and J. Mo. 2020. “Effects of Human Disturbance Activities and Environmental Change Factors on Terrestrial Nitrogen Fixation.” Global Change Biology 26: 6203–6217. doi:10.1111/gcb.15328.
  • Zhou, F., C. Cai, H. Wang, J. Zhu, J. Fu, K. Liu, K. Hu, et al. 2018. “Importance of Subsurface Fluxes of Water, Nitrogen and Phosphorus from Paddy Rice Fields Relative to Surface Runoff.” Agricultural Water Management 213:627–635. doi:10.1016/j.agwat.2018.11.005.
  • Zhou, F., P. Ciais, K. Hayashi, J. Galloway, D.-G. Kim, C. Yang, S. Li, B. Liu, Z. Shang, and S. Gao. 2016. “Re-estimating NH3 Emissions from Chinese Cropland by a New Nonlinear Model.” Environmental Science and Technology 50: 564–572. doi:10.1021/acs.est.5b03156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.