255
Views
0
CrossRef citations to date
0
Altmetric
Fertilizers and soil amendments

Transport of hydroxyapatite nanoparticles coated with polyacrylic acid under unsaturated water flow in soil columns

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 124-136 | Received 09 Sep 2022, Accepted 24 Dec 2022, Published online: 19 Jan 2023

References

  • Asomaning, S. K. 2020. “Processes and Factors Affecting Phosphorus Sorption in Soils.” Chap. 3 in Sorption in 2020s, edited by G. Kyzas and N. Lazaridis, 1–15. London: IntechOpen. doi:10.5772/intechopen.90719.
  • Babakhani, P. 2019. “The Impact of Nanoparticle Aggregation on Their Size Exclusion During Transport in Porous Media: One-And Three-Dimensional Modelling Investigations.” Scientific Reports 9 (1): 1–12. doi:10.1038/s41598-019-50493-6.
  • Barber, S. A. 1995. Soil Nutrient Bioavailability: A Mechanistic Approach. 2nd ed. New York: John Wiley & Sons, Inc.
  • Brand-Klibanski, S., D. Yalin, and M. Shenker. 2014. “Comment on “Formations of Hydroxyapatite and Inositol Hexakisphosphate in Poultry Litter During the Composting Period: Sequential Fractionation, P K-Edge XANES and Solution 31P NMR Investigations”.” Environmental Science & Technology 48 (16): 9955–9956. doi:10.1021/es502662z.
  • Chardon, W., R. Menon, and S. Chien. 1996. “Iron Oxide Impregnated Filter Paper (Pi Test): A Review of Its Development and Methodological Research.” Nutrient Cycling in Agroecosystems 46 (1): 41–51. doi:10.1007/BF00210223.
  • Cordell, D., J. -O. Drangert, and S. White. 2009. “The Story of Phosphorus: Global Food Security and Food for Thought.” Global Environmental Change 19 (2): 292–305. doi:10.1016/j.gloenvcha.2008.10.009.
  • Glæsner, N., C. Kjaergaard, G. H. Rubæk, and J. Magid. 2011. “Effect of Irrigation Regimes on Mobilization of Nonreactive Tracers and Dissolved and Particulate Phosphorus in Slurry‐injected Soils.” Water Resources Research 47 (12): W12536. doi:10.1029/2011WR010769.
  • HGI (HydroGeoLogic, Inc.), and AGCI (Allison Geoscience Consultants, Inc.). 1999. “MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems.” User Manual Supplement for Version 4.0.
  • Hunt, J. F., T. Ohno, Z. He, C. W. Honeycutt, and D. B. Dail. 2007. “Inhibition of Phosphorus Sorption to Goethite, Gibbsite, and Kaolin by Fresh and Decomposed Organic Matter.” Biology and Fertility of Soils 44 (2): 277–288. doi:10.1007/s00374-007-0202-1.
  • IBM Corporation. 2010. “IBM SPSS Statistics for Windows.” IBM Corparation. 19.0.0. Armonk, NY, USA
  • Kopittke, P. M., E. Lombi, P. Wang, J. K. Schjoerring, and S. Husted. 2019. “Nanomaterials as Fertilizers for Improving Plant Mineral Nutrition and Environmental Outcomes.” Environmental Science: Nano 6 (12): 3513–3524. doi:10.1039/C9EN00971J.
  • Kuo, S. 1996. “Phosphorus.” Chap. 32 in Methods of Soil Analysis-Part 3-Chemical Methods, edited by D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner, 869–919. USA: Soil Science Society of America and American Society of Agronomy.
  • Lambers, H., M. W. Shane, M. D. Cramer, S. J. Pearse, and E. J. Veneklaas. 2006. “Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits.” Annals of Botany 98 (4): 693–713. doi:10.1093/aob/mcl114.
  • Linley, S., A. Mellage, N. R. Thomson, P. Van Cappellen, and F. Rezanezhad. 2021. “Spatiotemporal Geo-Electrical Sensing of a Pluronic-Coated Cobalt Ferrite Nanoparticle Slug in Natural Sand Flow-Through Columns.” Science of the Total Environment 769: 144522. doi:10.1016/j.scitotenv.2020.144522.
  • Liu, R., and R. Lal. 2014. “Synthetic Apatite Nanoparticles as a Phosphorus Fertilizer for Soybean (Glycine Max).” Scientific Reports 4: 5686. doi:10.1038/srep05686.
  • Liu, R., and R. Lal. 2015. “Potentials of Engineered Nanoparticles as Fertilizers for Increasing Agronomic Productions.” Science of the Total Environment 514: 131–139. doi:10.1016/j.scitotenv.2015.01.104.
  • Loeppert, R. H., and . 1996. “Iron.” Chap. 23 in Methods of Soil Analysis-Part 3-Chemical Methods, edited by D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, M. E. Sumner, and J. M. Bartels, 639–664. USA: Soil Science Society of America and American Society of Agronomy.
  • McKnight, M. M., Z. Qu, J. K. Copeland, D. S. Guttman, and V. K. Walker. 2020. “A Practical Assessment of Nano-Phosphate on Soybean (Glycine Max) Growth and Microbiome Establishment.” Scientific Reports 10 (1): 1–17. doi:10.1038/s41598-020-66005-w.
  • Mikhak, A., A. Sohrabi, M. Z. Kassaee, and M. Feizian. 2017. “Synthetic Nanozeolite/Nanohydroxyapatite as a Phosphorus Fertilizer for German Chamomile (Matricariachamomilla L.).” Industrial Crops and Products 95: 444–452. doi:10.1016/j.indcrop.2016.10.054.
  • Montalvo, D., M. J. McLaughlin, and F. Degryse. 2015. “Efficacy of Hydroxyapatite Nanoparticles as Phosphorus Fertilizer in Andisols and Oxisols.” Soil Science Society of America Journal 79 (2): 551–558. doi:10.2136/sssaj2014.09.0373.
  • Parkhurst, D. L., and C. Appelo. 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Denver, USA: US Geological Survey. https://pubs.usgs.gov/tm/06/a43/.
  • Reddy, K., R. Kadlec, E. Flaig, and P. Gale. 1999. “Phosphorus Retention in Streams and Wetlands: A Review.” Critical Reviews in Environmental Science and Technology 29 (1): 83–146. doi:10.1080/10643389991259182.
  • Reynolds, C., and P. Davies. 2001. “Sources and Bioavailability of Phosphorus Fractions in Freshwaters: A British Perspective.” Biological Reviews 76 (1): 27–64. doi:10.1017/S1464793100005625.
  • Rukh, S., M. S. Akhtar, A. Mehmood, N. Hoghooghi, and D. E. Radcliffe. 2018. “Evaluating Nonequilibrium Solute Transport through Four Soils of Pakistan Using a HYDRUS Model and Nonparametric Indices.” Soil Science Society of America Journal 82 (5): 1071–1084. doi:10.2136/sssaj2017.10.0352.
  • Sangani, M. F., G. Owens, and A. Fotovat. 2019. “Transport of Engineered Nanoparticles in Soils and Aquifers.” Environmental Reviews 27 (1): 43–70. doi:10.1139/er-2018-0022.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. “NIH Image to ImageJ: 25 Years of Image Analysis.” Nature Methods 9 (7): 671–675. doi:10.1038/nmeth.2089.
  • Schröder, J., A. Smit, D. Cordell, and A. Rosemarin. 2011. “Improved Phosphorus Use Efficiency in Agriculture: A Key Requirement for Its Sustainable Use.” Chemosphere 84 (6): 822–831. doi:10.1016/j.chemosphere.2011.01.065.
  • Sen, T. K., and K. C. Khilar. 2009. “Mobile Subsurface Colloids and Colloid-Mediated Transport of Contaminants in Subsurface Soil.” Chap. 4 in Handbook of Surface Colloid Chemistry. 3rd ed. edited by K. S. Birdi, 107–130. USA: CRC Press.
  • Sims, J. T. 2000. “Soil Test Phosphorus: Bray and Kurtz P-1”. In Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters, edited by G. M. Pierzynski, 13–14. North Carolina State University. http://www.soil.ncsu.edu/sera17/publications/sera17-2/pm_cover.htm
  • Strawn, D. G., H. L. Bohn, and G. A. O’Connor. 2020. “Soil Water Chemistry.” Chap. 4 in Soil Chemistry. 5th ed.77–118. USA: Wiley Blackwell.
  • Taneda, S. 1979. “Visualization of Separating Stokes Flows.” Journal of the Physical Society of Japan 46 (6): 1935–1942. doi:10.1143/JPSJ.46.1935.
  • Tang, Y., X. Wang, Y. Yan, H. Zeng, G. Wang, W. Tan, F. Liu, and X. Feng. 2019. “Effects of myo-Inositol Hexakisphosphate, Ferrihydrite Coating, Ionic Strength and pH on the Transport of TiO2 Nanoparticles in Quartz Sand.” Environmental Pollution 252: 1193–1201. doi:10.1016/j.envpol.2019.06.008.
  • Taşkın, M. B., Ö. Şahin, H. Taskin, O. Atakol, A. Inal, and A. Gunes. 2018. “Effect of Synthetic Nano-Hydroxyapatite as an Alternative Phosphorus Source on Growth and Phosphorus Nutrition of Lettuce (Lactuca Sativa L.) Plant.” Journal of Plant Nutrition 41 (9): 1148–1154. doi:10.1080/01904167.2018.1433836.
  • Thomas, G. W. J. M. Bigham1996. “Soil pH and Soil Acidity.” Chap. 16 in Methods of Soil Analysis-Part 3-Chemical Methods, edited by D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, M. E. Sumner, and J. M. Bartels, 475–490. USA: Soil Science Society of America and American Society of Agronomy.
  • Tong, M., X. Li, C. N. Brow, and W. P. Johnson. 2005. “Detachment-Influenced Transport of an Adhesion-Deficient Bacterial Strain Within Water-Reactive Porous Media.” Environmental Science & Technology 39 (8): 2500–2508. doi:10.1021/es049013t.
  • Tufenkji, N., and M. Elimelech. 2004. “Deviation from the Classical Colloid Filtration Theory in the Presence of Repulsive DLVO Interactions.” Langmuir 20 (25): 10818–10828. doi:10.1021/la0486638.
  • Vaidyanathan, R., and C. Tien. 1988. “Hydrosol Deposition in Granular Beds.” Chemical Engineering Science 43 (2): 289–302. doi:10.1016/0009-2509(88)85041-3.
  • Vanden Nest, T. 2015. “Long Term Use of Different Organic Fertilizer Types and Impact on Phosphorus Leaching.” PhD diss., KU Leuven.
  • van Reeuwijk, L. P. 2002. “Extractable iron, aluminium, manganese and silicon.“ Chap. 12 in Procedures for Soil Analysis. 6th ed. edited by L. P. van Reeuwijk, 5–6. Wageningen, Netherlands: International Soil Reference and Information Centre, Food and Agriculture Organization of the United Nations.
  • Van Rotterdam, A., D. Bussink, E. Temminghoff, and W. Van Riemsdijk. 2012. “Predicting the Potential of Soils to Supply Phosphorus by Integrating Soil Chemical Processes and Standard Soil Tests.” Geoderma 189: 617–626. doi:10.1016/j.geoderma.2012.07.003.
  • Van Rotterdam, A., E. Temminghoff, W. Schenkeveld, T. Hiemstra, and W. Van Riemsdijk. 2009. “Phosphorus Removal from Soil Using Fe Oxide-Impregnated Paper: Processes and Applications.” Geoderma 151 (3–4): 282–289. doi:10.1016/j.geoderma.2009.04.013.
  • Wang, D., S. A. Bradford, R. W. Harvey, B. Gao, L. Cang, and D. Zhou. 2012a. “Humic Acid Facilitates the Transport of ARS-Labeled Hydroxyapatite Nanoparticles in Iron Oxyhydroxide-Coated Sand.” Environmental Science & Technology 46 (5): 2738–2745. doi:10.1021/es203784u.
  • Wang, D., S. A. Bradford, R. W. Harvey, X. Hao, and D. Zhou. 2012b. “Transport of ARS-Labeled Hydroxyapatite Nanoparticles in Saturated Granular Media is Influenced by Surface Charge Variability Even in the Presence of Humic Acid.” Journal of Hazardous Materials 229: 170–176. doi:10.1016/j.jhazmat.2012.05.089.
  • Wang, D., L. Chu, M. Paradelo, W. J. Peijnenburg, Y. Wang, and D. Zhou. 2011a. “Transport Behavior of Humic Acid-Modified Nano-Hydroxyapatite in Saturated Packed Column: Effects of Cu, Ionic Strength, and Ionic Composition.” Journal of Colloid and Interface Science 360 (2): 398–407. doi:10.1016/j.jcis.2011.04.064.
  • Wang, M., B. Gao, and D. Tang. 2016. “Review of Key Factors Controlling Engineered Nanoparticle Transport in Porous Media.” Journal of Hazardous Materials 318: 233–246. doi:10.1016/j.jhazmat.2016.06.065.
  • Wang, D., Y. Jin, and D. P. Jaisi. 2015. “Cotransport of Hydroxyapatite Nanoparticles and Hematite Colloids in Saturated Porous Media: Mechanistic Insights from Mathematical Modeling and Phosphate Oxygen Isotope Fractionation.” Journal of Contaminant Hydrology 182: 194–209. doi:10.1016/j.jconhyd.2015.09.004.
  • Wang, D., M. Paradelo, S. A. Bradford, W. J. Peijnenburg, L. Chu, and D. Zhou. 2011b. “Facilitated Transport of Cu with Hydroxyapatite Nanoparticles in Saturated Sand: Effects of Solution Ionic Strength and Composition.” Water Research 45 (18): 5905–5915. doi:10.1016/j.watres.2011.08.041.
  • Wang, C., R. Wang, Z. Huo, E. Xie, and H. E. Dahlke. 2020. “Colloid Transport through Soil and Other Porous Media under Transient Flow Conditions-A Review.” Wiley Interdisciplinary Reviews: Water 7 (4): e1439. doi:10.1002/wat2.1439.
  • Watanabe, F., and S. Olsen. 1965. “Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil.” Soil Science Society of America Journal 29 (6): 677–678. doi:10.2136/sssaj1965.03615995002900060025x.
  • Weeks, J. J., Jr, and G. M. Hettiarachchi. 2019. “A Review of the Latest in Phosphorus Fertilizer Technology: Possibilities and Pragmatism.” Journal of Environmental Quality 48 (5): 1300–1313. doi:10.2134/jeq2019.02.0067.
  • Xiong, L., P. Wang, M. N. Hunter, and P. M. Kopittke. 2018. “Bioavailability and Movement of Hydroxyapatite Nanoparticles (HA-NPs) Applied as a Phosphorus Fertiliser in Soils.” Environmental Science: Nano 5 (12): 2888–2898. doi:10.1039/C8EN00751A.
  • Xu, S., X. Chen, and J. Zhuang. 2019. “Opposite Influences of Mineral-Associated and Dissolved Organic Matter on the Transport of Hydroxyapatite Nanoparticles through Soil and Aggregates.” Environmental Research 171: 153–160. doi:10.1016/j.envres.2019.01.020.
  • Yang, Z., Z. Fang, P. E. Tsang, J. Fang, and D. Zhao. 2016. “In situ Remediation and Phytotoxicity Assessment of Lead-Contaminated Soil by Biochar-Supported nHAP.” Journal of Environmental Management 182: 247–251. doi:10.1016/j.jenvman.2016.07.079.
  • Yao, K. -M., M. T. Habibian, and C. R. O’Melia. 1971. “Water and Waste Water Filtration: Concepts and Applications.” Environmental Science & Technology 5 (11): 1105–1112. doi:10.1021/es60058a005.
  • Yecheskel, Y., I. Dror, and B. Berkowitz. 2018. “Silver Nanoparticle (Ag-NP) Retention and Release in Partially Saturated Soil: Column Experiments and Modelling.” Environmental Science: Nano 5 (2): 422–435. doi:10.1039/C7EN00990A.
  • Zhang, T., M. J. Murphy, H. Yu, H. G. Bagaria, K. Y. Yoon, B. M. Neilson, C. W. Bielawski, K. P. Johnston, C. Huh, and S. L. Bryant. 2015. “Investigation of Nanoparticle Adsorption during Transport in Porous Media.” SPE Journal 20 (04): 667–677. doi:10.2118/166346-PA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.