462
Views
0
CrossRef citations to date
0
Altmetric
Special Issue - Biochar 2024

Enhancement of alkali- and oxidation-modified biochars derived from water hyacinth for ammonium adsorption capacity

, , , , & ORCID Icon
Pages 21-33 | Received 02 Jun 2022, Accepted 15 Oct 2023, Published online: 28 Oct 2023

References

  • Abdulrazzaq, H., H. Jol, A. Husni, and R. Abu-Bakr. 2014. “Characterization and Stabilisation of Biochars Obtained from Empty Fruit Bunch, Wood, and Rice Husk.” BioResources 9 (2): 2888–2898. https://doi.org/10.15376/biores.9.2.2888-2898.
  • Ahmad, M., S. Soo Lee, A. Upamali Rajapaksha, M. Vithanage, M. Zhang, J. Sik Cho, S. Eun Lee, and O. Yong Sik. 2013. “Trichloroethylene Adsorption by Pine Needle Biochars Produced at Various Pyrolysis Temperatures.” Bioresource Technology 143:615–622. https://doi.org/10.1016/j.biortech.2013.06.033.
  • Angar, Y., N. Eddine Djelali, and S. Kebbouche-Gana. 2017. “Investigation of Ammonium Adsorption on Algerian Natural Bentonite.” Environmental Science and Pollution Research 24 (12): 11078–11089. https://doi.org/10.1007/s11356-016-6500-0.
  • Cao, Q., L. Xiaochuan, H. Jiang, W. Han, Z. Xie, X. Zhang, N. Li, et al. 2021. “Ammonia Removal Through Combined Methane Oxidation and Nitrification-Denitrification and the Interactions Among Functional Microorganisms.” Water Research 188 (9): 116555. https://doi.org/10.1016/j.watres.2020.116555.
  • Cao, T., P. Xie, N. Leyi, M. Zhang, and X. Jun. 2009. “Carbon and Nitrogen Metabolism of an Eutrophication Tolerative Macrophyte, Potamogeton Crispus, Under NH4+ Stress and Low Light Availability.” Environmental and Experimental Botany 66 (1): 74–78. https://doi.org/10.1016/j.envexpbot.2008.10.004.
  • Chen, M., F. Wang, D. L. Zhang, Y. Wei Ming, and Y. Liu. 2021. “Effects of Acid Modification on the Structure and Adsorption NH4+-N Properties of Biochar.” Renewable Energy 169:1343–1350. https://doi.org/10.1016/j.renene.2021.01.098.
  • Cho, K., S. Gu Shin, J. Lee, T. Koo, W. Kim, and S. Hwang. 2016. “Nitrification Resilience and Community Dynamics of Ammonia-Oxidizing Bacteria with Respect to Ammonia Loading Shock in a Nitrification Reactor Treating Steel Wastewater.” Journal of Bioscience and Bioengineering 122 (2): 196–202. https://doi.org/10.1016/j.jbiosc.2016.01.009.
  • Cruz, H., P. Luckman, T. Seviour, W. Verstraete, B. Laycock, and I. Pikaar. 2018. “Rapid Removal of Ammonium from Domestic Wastewater Using Polymer Hydrogels.” Scientific Reports 8 (1): 1–6. https://doi.org/10.1038/s41598-018-21204-4.
  • Defu, X., J. Cao, L. Yingxue, A. Howard, and Y. Kewei. 2019. “Effect of Pyrolysis Temperature on Characteristics of Biochars Derived from Different Feedstocks: A Case Study on Ammonium Adsorption Capacity.” Waste Management 87:652–660. https://doi.org/10.1016/j.wasman.2019.02.049.
  • Farinella, N. V., G. D. Matos, and M. A. Z. Arruda. 2007. “Grape Bagasse as a Potential Biosorbent of Metals in Effluent Treatments.” Bioresource Technology 98 (10): 1940–1946. https://doi.org/10.1016/j.biortech.2006.07.043.
  • Fulazzaky, M. A., N. Hudai Abdullah, A. Rahim Mohd Yusoff, and E. Paul. 2015. “Conditioning the Alternating Aerobic-Anoxic Process to Enhance the Removal of Inorganic Nitrogen Pollution from a Municipal Wastewater in France.” Journal of Cleaner Production 100 (3): 195–201. https://doi.org/10.1016/j.jclepro.2015.03.043.
  • Gai, X., H. Wang, J. Liu, L. Zhai, S. Liu, T. Ren, H. Liu, and J. A. Coles. 2014. “Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate.” PLoS ONE 9 (12): 1–19. https://doi.org/10.1371/journal.pone.0113888.
  • Graber, E., B. Singh, K. Hanley, and J. Lehmann. 2017. “Determintion of cation exchange capacity in biochar.” Biochar: A Guide to Analytical Methods, 74–84 Vol. 1. 1st ed. Clayton: CSIRO Publishing.
  • Hafshejani, D., A. H. Laleh, A. Ali Naseri, A. Soltani Mohammadi, F. Abbasi, and A. Bhatnagar. 2016. “Removal of Nitrate from Aqueous Solution by Modified Sugarcane Bagasse Biochar.” Ecological Engineering 95:101–111. https://doi.org/10.1016/j.ecoleng.2016.06.035.
  • Haipeng, W., C. Lai, G. Zeng, J. Liang, J. Chen, X. Jijun, J. Dai, et al. 2017. “The Interactions of Composting and Biochar and Their Implications for Soil Amendment and Pollution Remediation: A Review.” Critical Reviews in Biotechnology 37 (6): 754–764. https://doi.org/10.1080/07388551.2016.1232696.
  • Hakimi, M. H., V. Jegatheesan, and D. Navaratna. 2020. “The Potential of Adopting Struvite Precipitation as a Strategy for the Removal of Nutrients from Pre-AnMbr Treated Abattoir Wastewater.” Journal of Environmental Management. (October 2019)259:109783. https://doi.org/10.1016/j.jenvman.2019.109783.
  • Han, B., C. Butterly, W. Zhang, J. Zheng He, and D. Chen. 2021. “Adsorbent Materials for Ammonium and Ammonia Removal: A Review.” Journal of Cleaner Production 283:124611. https://doi.org/10.1016/j.jclepro.2020.124611.
  • Hellen, S., T. E. Mlsna, and D. O. Wipf. 2021. “Functionalized Biochar Electrodes for Asymmetrical Capacitive Deionization.” Desalination 516 (April): 115240. https://doi.org/10.1016/j.desal.2021.115240.
  • Hsu, D., L. Changyi, T. Pang, Y. Wang, and G. Wang. 2019. “Adsorption of Ammonium Nitrogen from Aqueous Solution on Chemically Activated Biochar Prepared from Sorghum Distillers Grain.” Applied Sciences (Switzerland) 9 (23): 5249. https://doi.org/10.3390/app9235249.
  • Jianbo, L., W. Jianguo, F. Zhihui, and L. Zhu. 2007. “Water Hyacinth in China: A Sustainability Science-Based Management Framework.” Environmental Management 40 (6): 823–830. https://doi.org/10.1007/s00267-007-9003-4.
  • Jiang, Y. H., L. An Yu, H. Deng, Y. Cheng Hui, W. Yu Qing, Y. Dan Linmu, and H. Lin Hang. 2019. “Characteristics of Nitrogen and Phosphorus Adsorption by Mg-Loaded Biochar from Different Feedstocks.” Bioresource Technology 276:183–189. (November 2018). https://doi.org/10.1016/j.biortech.2018.12.079.
  • Jiwan, S., and A. S. Kalamdhad. 2013. “Assessment of Bioavailability and Leachability of Heavy Metals During Rotary Drum Composting of Green Waste (Water Hyacinth).” Ecological Engineering 52:59–69. https://doi.org/10.1016/j.ecoleng.2012.12.090.
  • Keith, B., T. Stephenson, and M. J. Semmens. 1998. “Nitrification and Oxygen Utilisation in a Membrane Aeration Bioreactor.” Journal of Membrane Science 144 (1–2): 197–209. https://doi.org/10.1016/S0376-7388(98)00047-7.
  • Kizito, S., H. Luo, L. Jiaxin, H. Bah, R. Dong, and W. Shubiao. 2019. “Role of Nutrient-Enriched Biochar as a Soil Amendment During Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand.” Sustainability 11 (11): 3211. https://doi.org/10.3390/su11113211.
  • Kołodyńska, D., J. Bąk, M. Kozioł, and L. V. Pylypchuk. 2017. “Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar.” Nanoscale Research Letters 12 (1): 12. https://doi.org/10.1186/s11671-017-2201-y.
  • Largitte, L., and R. Pasquier. 2016. “A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon.” Chemical Engineering Research and Design 109:495–504. https://doi.org/10.1016/j.cherd.2016.02.006.
  • Liao, P. H., A. Chen, and K. V. Lo. 1995. “Removal of Nitrogen from Swine Manure Wastewaters by Ammonia Stripping.” Bioresource Technology 54 (1): 17–20. https://doi.org/10.1016/0960-8524(95)00105-0.
  • Mingyu, L., Z. Xiaoqiang, Z. Fenghua, R. Gang, C. Gang, and L. Song. 2011. “Application of Modified Zeolite for Ammonium Removal from Drinking Water.” Desalination 271 (1–3): 295–300. https://doi.org/10.1016/j.desal.2010.12.047.
  • Muche, H., T. Mucheye, and D. Tadesse. 2020. “Water Quality and Transpiration Responses of Eichornia Crassipes at Lake Tana, Ethiopia.” Sustainable Water Resources Management 6 (3): 1–7. https://doi.org/10.1007/s40899-020-00392-w.
  • Önal, Y., C. Akmil-Başar, and Ç. Sarici-Özdemir. 2007. “Investigation Kinetics Mechanisms of Adsorption Malachite Green Onto Activated Carbon.” Journal of Hazardous Materials 146 (1–2): 194–203. https://doi.org/10.1016/j.jhazmat.2006.12.006.
  • Qiangqiang, Y., D. Xia, L. Heng, K. Lanting, Y. Wang, H. Wang, Y. Zheng, and L. Qingbiao. 2016. “Effectiveness and Mechanisms of Ammonium Adsorption on Biochars Derived from Biogas Residues.” RSC Advances 6 (91): 88373–88381. https://doi.org/10.1039/c6ra16913a.
  • Rajaniemi, K., H. Tao, E. Tuulia Nurmesniemi, S. Tuomikoski, and U. Lassi. 2021. “Phosphate and Ammonium Removal from Water Through Electrochemical and Chemical Precipitation of Struvite.” Processes 9 (1): 1–13. https://doi.org/10.3390/pr9010150.
  • Rajapaksha, A. U., S. S. Chen, D. C. W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N. S. Bolan, and O. Yong Sik. 2016. “Engineered/Designer Biochar for Contaminant Removal/Immobilization from Soil and Water: Potential and Implication of Biochar Modification.” Chemosphere 148:276–291. https://doi.org/10.1016/j.chemosphere.2016.01.043.
  • Ruemei, F., C. Lung Chen, J. Yen Lin, J. Hua Tzeng, C. Pin Huang, C. Dong, and C. P. Huang. 2019. “Adsorption Characteristics of Ammonium Ion Onto Hydrous Biochars in Dilute Aqueous Solutions.” Bioresource Technology 272:465–472. (September 2018). https://doi.org/10.1016/j.biortech.2018.10.064.
  • Shang, L., X. Hao, S. Huang, and Y. Zhang. 2018. “Adsorption of Ammonium in Aqueous Solutions by the Modified Biochar and Its Application as an Effective N-Fertilizer.” Water, Air, and Soil Pollution 229 (10). https://doi.org/10.1007/s11270-018-3956-1.
  • Sica, M., A. Duta, C. Teodosiu, and C. Draghici. 2014. “Thermodynamic and Kinetic Study on Ammonium Removal from a Synthetic Water Solution Using Ion Exchange Resin.” Clean Technologies and Environmental Policy 16 (2): 351–359. https://doi.org/10.1007/s10098-013-0625-3.
  • Simon, K., W. K. K. Shubiao Wu, M. Lei, L. Qimin, H. Bah, and R. Dong. 2015. “Evaluation of Slow Pyrolyzed Wood and Rice Husks Biochar for Adsorption of Ammonium Nitrogen from Piggery Manure Anaerobic Digestate Slurry.” Science of the Total Environment 505:102–112. https://doi.org/10.1016/j.scitotenv.2014.09.096.
  • Song, H., J. Wang, A. Garg, X. Lin, Q. Zheng, and S. Sharma. 2019. “Potential of Novel Biochars Produced from Invasive Aquatic Species Outside Food Chain in Removing Ammonium Nitrogen: Comparison with Conventional Biochars and Clinoptilolite.” Sustainability 11 (24): 1–18. https://doi.org/10.3390/su11247136.
  • Takaya, C. A., L. A. Fletcher, S. Singh, K. U. Anyikude, and A. B. Ross. 2016. “Phosphate and Ammonium Sorption Capacity of Biochar and Hydrochar from Different Wastes.” Chemosphere 145:518–527. https://doi.org/10.1016/j.chemosphere.2015.11.052.
  • Takaya, C. A., K. R. Parmar, L. A. Fletcher, and A. B. Ross. 2019. “Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia.” Agriculture (Switzerland) 9 (1). https://doi.org/10.3390/agriculture9010016.
  • Taşdemir, A., İ. Cengiz, E. Yildiz, and Y. Kemal Bayhan. 2020. “Investigation of Ammonia Stripping with a Hydrodynamic Cavitation Reactor.” Ultrasonics Sonochemistry 60. (August 2019). https://doi.org/10.1016/j.ultsonch.2019.104741.
  • Thi Mai, V., V. Tuyen Trinh, D. Phuong Doan, H. Tap Van, T. Vinh Nguyen, S. Vigneswaran, and H. Hao Ngo. 2017. “Removing Ammonium from Water Using Modified Corncob-Biochar.” Science of the Total Environment 579:612–619. https://doi.org/10.1016/j.scitotenv.2016.11.050.
  • Van Drecht, G., A. F. Bouwman, J. Harrison, and J. M. Knoop. 2009. “Global Nitrogen and Phosphate in Urban Wastewater for the Period 1970 to 2050.” Global Biogeochemical Cycles 23 (3): 1–19. https://doi.org/10.1029/2009GB003458.
  • Wahab, M. A., S. Jellali, and N. Jedidi. 2010. “Ammonium Biosorption Onto Sawdust: FTIR Analysis, Kinetics and Adsorption Isotherms Modeling.” Bioresource Technology 101 (14): 5070–5075. https://doi.org/10.1016/j.biortech.2010.01.121.
  • Wang, Z., L. Jie, G. Zhang, Y. Zhi, D. Yang, X. Lai, and T. Ren. 2020. “Characterization of Acid-Aged Biochar and Its Ammonium Adsorption in an Aqueous Solution.” Materials 13 (10): 2270. https://doi.org/10.3390/ma13102270.
  • Wang, B., J. Lehmann, K. Hanley, R. Hestrin, and A. Enders. 2015. “Adsorption and Desorption of Ammonium by Maple Wood Biochar as a Function of Oxidation and pH.” Chemosphere 138:120–126. https://doi.org/10.1016/j.chemosphere.2015.05.062.
  • Wu, P., Z. Wang, H. Wang, N. S. Bolan, Y. Wang, and W. Chen. 2020. “Visualizing the Emerging Trends of Biochar Research and Applications in 2019: A Scientometric Analysis and Review.” Biochar 2 (2): 135–150. https://doi.org/10.1007/s42773-020-00055-1.
  • Xiaojian, H., X. Zhang, H. Hao Ngo, W. Guo, H. Wen, L. Chaocan, Y. Zhang, and M. Chanjuan. 2020. “Comparison Study on the Ammonium Adsorption of the Biochars Derived from Different Kinds of Fruit Peel.” Science of the Total Environment 707:135544. https://doi.org/10.1016/j.scitotenv.2019.135544.
  • Yang, X., S. Zhang, J. Meiting, and L. Liu. 2019. “Preparation and Modification of Biochar Materials and Their Application in Soil Remediation.” Applied Sciences (Switzerland) 9 (7): 1365. https://doi.org/10.3390/app9071365.
  • Yang, Z., L. Zifu, and I. B. Mahmood. 2014. “Recovery of NH4+ by Corn Cob Produced Biochars and Its Potential Application as Soil Conditioner.” Frontiers of Environmental Science and Engineering 8 (6): 825–834. https://doi.org/10.1007/s11783-014-0682-9.
  • Yin, Q., M. Liu, and H. Ren. 2019. “Removal of Ammonium and Phosphate from Water by Mg-Modified Biochar: Influence of Mg Pretreatment and Pyrolysis Temperature.” BioResources 14 (3): 6203–6218. https://doi.org/10.15376/biores.14.3.6203-6218.
  • Yin, Q., R. Wang, and Z. Zhao. 2018. “Application of Mg–Al-Modified Biochar for Simultaneous Removal of Ammonium, Nitrate, and Phosphate from Eutrophic Water.” Journal of Cleaner Production 176:230–240. https://doi.org/10.1016/j.jclepro.2017.12.117.
  • Zhang, Y., X. Jin, L. Bin, Z. Xie, L. Xuede, J. Tang, and S. Fan. 2021. “Enhanced Adsorption Performance of Tetracycline in Aqueous Solutions by KOH-Modified Peanut Shell-Derived Biochar.” Biomass Conversion and Biorefinery 0123456789. https://doi.org/10.1007/s13399-021-02083-8.
  • Zhang, L., S. Tang, and Y. Guan. 2020. “Excellent Adsorption-Desorption of Ammonium by a Poly(acrylic Acid)-Grafted Chitosan and Biochar Composite for Sustainable Agricultural Development.” ACS Sustainable Chemistry and Engineering 8 (44): 16451–16462. https://doi.org/10.1021/acssuschemeng.0c05070.
  • Zhao, T., P. Chen, L. Zhang, L. Zhang, Y. Gao, A. Shuo, H. Liu, and X. Liu. 2021. “Heterotrophic Nitrification and Aerobic Denitrification by a Novel Acinetobacter Sp. TAC-1 at Low Temperature and High Ammonia Nitrogen.” Bioresource Technology 339 (July): 125620. https://doi.org/10.1016/j.biortech.2021.125620.
  • Zheng, Y., and A. Wang. 2009. “Evaluation of Ammonium Removal Using a Chitosan-G-Poly (Acrylic Acid)/Rectorite Hydrogel Composite.” Journal of Hazardous Materials 171 (1–3): 671–677. https://doi.org/10.1016/j.jhazmat.2009.06.053.
  • Zhixiong, Y., L. Zhang, Q. Huang, and Z. Tan. 2019. “Development of a Carbon-Based Slow Release Fertilizer Treated by Bio-Oil Coating and Study on Its Feedback Effect on Farmland Application.” Journal of Cleaner Production 239:118085. https://doi.org/10.1016/j.jclepro.2019.118085.
  • Zhong, Z., Y. Guowen, M. Wenting, C. Zhang, H. Huang, L. Shengui, M. Gao, L. Xiejuan, B. Zhang, and H. Zhu. 2019. “Enhanced Phosphate Sequestration by Fe(iii) Modified Biochar Derived from Coconut Shell.” RSC Advances 9 (18): 10425–10436. https://doi.org/10.1039/c8ra10400j.
  • Zhu, K., F. Hao, J. Zhang, L. Xiaoshu, J. Tang, and X. Xinhua. 2012. “Studies on Removal of NH4+-N from Aqueous Solution by Using the Activated Carbons Derived from Rice Husk.” Biomass and Bioenergy 43:18–25. https://doi.org/10.1016/j.biombioe.2012.04.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.