272
Views
0
CrossRef citations to date
0
Altmetric
Special Issue - Biochar 2024

Interactive influence of particle size and carbonization temperature on Silicon availability in Rice husk biochar

ORCID Icon, & ORCID Icon
Pages 34-40 | Received 28 Jun 2023, Accepted 15 Nov 2023, Published online: 27 Nov 2023

References

  • Abbas, Q., G. Liu, B. Yousaf, M. U. Ali, H. Ullah, M. A. M. Munir, and R. Liu. 2018. “Contrasting Effects of Operating Conditions and Biomass Particle Size on Bulk Characteristics and Surface Chemistry of Rice Husk Derived-Biochars.” Journal of Analytical and Applied Pyrolysis 134:281–292. https://doi.org/10.1016/j.jaap.2018.06.018.
  • Ahmedna, M., M. M. Johns, S. J. Clarke, W. E. Marshall, and R. M. Rao. 1997. “Potential of Agricultural By-product-based Activated Carbons for Use in Raw Sugar Decolorization.” Journal of the Science of Food and Agriculture 75:117–124. https://doi.org/10.1002/(SICI)1097-0010(199709)75:1<117:AID-JSFA850>3.0.CO;2-M.
  • Anggria, L. 2017. “Characterization of Indonesian Local Silicon Material and Evaluation of Controlling Factors for Soil Silicon Availability.” PhD diss., Tottori University
  • Ankyu, E., Y. Kubota, and R. Noguchi. 2017. “Eluted Soluble Silica Content in Rice Husk Charcoal Produced by Rice Husk Burner.” Journal of the Japan Institute of Energy 96 (7): 217–227. https://doi.org/10.3775/jie.96.217.
  • ASTM (American Society of Testing and Materials). 2011. “Standard Test Methods for Chemical Analysis of Wood Charcoal.” ASTM Int 84:1–2. https://doi.org/10.1520/D1762-84R07.2.
  • Aysu, T., and M. M. Küçük. 2013. “Biomass Pyrolysis in a Fixed-Bed Reactor: Effects of Pyrolysis Parameters on Product Yields and Characterization of Products.” Energy 64:1002–1025. https://doi.org/10.1016/j.energy.2013.11.053.
  • Berthelsen, S., A. Hurney, A. D. Noble, A. Rudd, A. L. Garside, and A. Henderson. 2001. “An Assessment of Current Silicon Status of Sugarcane Production Soils from Tully to Mossman.” In Proceedings of the Austra. Soc. Of Sugarcane Techn., May, 1-4, Mackay, Queensland 23: 289–296. http://hdl.handle.net/102.100.100/201926?index=1.
  • Chen, Y., X. Shaoyi, C. Hui, and L. Hongbo. 2013. “The Effect of Catalyzer in the Matrix on the Structure and Performance of Carbon/Carbon Composite.” Journal of Composite Materials 47 (4): 409–417. https://doi.org/10.1177/0021998312440475.
  • Choi, H. S., Y. S. Choi, and H. C. Park. 2012. “Fast Pyrolysis Characteristics of Lignocellulosic Biomass with Varying Reaction Conditions.” Renew Energy 42:131–135. https://doi.org/10.1016/j.renene.2011.08.049.
  • Collett, C., O. Masek, N. Razali, and J. McGregor. 2020. “Influence of Biochar Composition and Source Material on Catalytic Performance: The Carboxylation of Glycerol with CO2 as a Case Study.” Catalysts 10 (9): 1067. https://doi.org/10.3390/catal10091067.
  • Dermirbas, A. 2004. “Effect of Temperature and Particle Size on Biochar Yield from Pyrolysis of Agricultural Residues.” Journal of Analytical and Applied Pyrolysis 72:243–248. https://doi.org/10.1016/j.jaap.2004.07.003.
  • Ding, C., S. Du, Y. Ma, X. Li, T. Zhang, and X. Wang. 2019. “Changes in the pH of Paddy Soils After Flooding and Drainage: Modeling and Validation.” Geoderma 337:511–513. https://doi.org/10.1016/j.geoderma.2018.10.012.
  • Ding, Y., Y. Liu, W. Wu, D. Shi, M. Yang, and Y. Li. 2014. ““Effects of Pyrolysis Temperature on the Physicochemical Properties of Biochar Derived from Municipal Solid Waste.” Bioresource Technology 164:189–194. https://doi.org/10.1016/j.biortech.2014.05.008.
  • FAOSTAT (Food and Agricultural Organization Statistics). 2022. Accessed September 20, 2022. https://www.fao.org/faostat/en/#data/QCL.
  • Foy, C. D. 1992. “Soil Chemical Factors Limiting Plant Root Growth.” Advances in Soil Science 19:97–149. https://doi.org/10.1007/978-1-4612-2894-3_5.
  • Fraysse, F., O. S. Pokrovsky, J. Schott, and J. D. Meunier. 2009. “Surface Chemistry and Reactivity of Plant Phytoliths in Aqueous Solutions.” Chemical Geology 258:197–206. https://doi.org/10.1016/j.chemgeo.2008.10.003.
  • GRiSP – (Global Rice Science Partnership). 2013. Rice Almanac. 4th ed. Los Banos: International Rice Research Institute.
  • Hasan, M. M., X. S. Wang, D. Mourant, R. Gunawan, C. Yu, X. Hu, S. Kadarwati, et al. 2017. “Grinding Pyrolysis of Mallee Wood: Effects of Pyrolysis Conditions on the Yields of Bio-Oil and Biochar.” Fuel Processing Technology 167:215–220. https://doi.org/10.1016/j.fuproc.2017.07.004.
  • Haynes, R. J. 2019. “What Effect Does Liming Have on Silicon Availability in Agricultural Soils?” Geoderma 337:375–383. https://doi.org/10.1016/j.geoderma.2018.09.026.
  • Haysom, M. B. C., and L. S. Chapman. 1975. “Some Aspects of Calcium Silicate Trials at Mackay.” In Proc. Queens. Soc. Sugarcane Technol., Mackay, Queensland 42: 117–122.
  • Houba, V. J. G., E. J. M. Temminghoff, G. A. Gaikhorst, and W. van Vark. 2000. “Soil Analysis Procedures Using 0.01 M Calcium Chloride as Extraction Reagent.” Communications in Soil Science and Plant Analysis 31:9-10, 1299–1396. https://doi.org/10.1080/00103620009370514.
  • Jindo, K., H. Mizumoto, Y. Sawada, M. A. Sanchez-Monedero, and T. Sonoki. 2014. “Physical and Chemical Characterization of Biochars Derived from Different Agricultural Residues.” Biogeosciences 11:6613–6621. https://doi.org/10.5194/bg-11-6613-2014.
  • Juo, A. S. R., and P. A. Sanchez. 1986. “Soil Nutritional Aspects with a View to Characterize Upland Rice Environment.” In Upland Rice Research, edited by F. J. Shideler, 81–95. Los Banos: International Rice Research Institute.
  • Liu, L., Z. Song, C. Yu, R. M. Eliam, H. Liu, B. P. Singh, and H. Wang. 2020. “Silicon Effects on Biomass Carbon and Phytolith-Occluded Carbon in Grasslands Under High-Salinity Conditions.” Frontiers in Plant Science 11:657. https://doi.org/10.3389/fpls.2020.00657.
  • Luyckx, M., J. F. Hausman, S. Lutts, and G. Guerriero. 2017. “Silicon and Plants: Current Knowledge and Technological Perspectives.” Frontiers in Plant Science 8:8. https://doi.org/10.3389/fpls.2017.00411.
  • Majumder, C. B., M. Sharma, and G. Soni. 2014. “A Simple Non-Conventional Method to Extract Amorphous Silica from Rice Husk.” International Journal of Offshore and Polar Engineering. https://www.academia.edu/9116091.
  • Ma, J. F., and N. Yamaji. 2006. “Silicon Uptake and Accumulation in Higher Plants.” Trends in Plant Science 11 (8): 392–397. https://doi.org/10.1016/j.tplants.2006.06.007.
  • Meunier, J. D., K. Sandhya, N. B. Prakash, D. Borschneck, and P. Dussouillez. 2018. “pH as a Proxy for Estimating Plant-Available Si: A Case Study in Rice Fields in Kamataka, (South India).” Plant and Soil 432:143–155. https://doi.org/10.1007/s11104-018-3758-7.
  • Miyake, Y. 1993. “Silica in Soils and Plants.” Scientific Reports of the Faculty of Agriculture, Okayama University 81:61–79. https://ousar.lib.okayama-u.ac.jp/896.
  • Nwajiaku, I. M., J. S. Olanrewaju, K. Sato, T. Tokunari, S. Kitano, and T. Masunaga. 2018. “Change in Nutrient Composition of Biochar from Rice Husk and Sugarcane Bagasse at Varying Pyrolytic Temperatures.” International Journal of Recycling of Organic Waste in Agriculture 7:269–276. https://doi.org/10.1007/s40093-018-0213-y.
  • Olsen, S. R., and L. E. Sommer. 1982. “Determination of Available Phosphorus.” In Methods of Soil Analysis, edited by A. L. Page, R. H. Miller, and D. R. Keeney, 403. Vol. 2. Madison WI: American Society of Agronomy.
  • Onay, O., and O. M. Kockar. 2003. “Slow, Fast, and Flash Pyrolysis of Rapeseed.” Renew Energy 28 (15): 2417–2433. https://doi.org/10.1016/S0960-1481(03)00137-X.
  • Parry, D. W., and F. Smithson. 1964. “Types of Opaline Silica Deposition in the Leaves of British Grasses.” Annals of Botany London 28:169–185. https://doi.org/10.1093/oxfordjournals.aob.a083891.
  • Pode, R. 2016. “Potential Applications of Rice Husk Ash Waste from Rice Husk Biomass Power Plant.” Renewable and Sustainable Energy Reviews 53:1468–1485. https://doi.org/10.1016/j.rser.2015.09.051.
  • Savant, N. K., G. H. Snyder, and L. E. Datnoff. 1997. “Silicon Management and Sustainable Rice Production.” Advances in Agronomy 58:151–199. https://doi.org/10.1016/S0065-2113(08)60255-2.
  • Singh, B. 2018. “Rice Husk Ash.” In Waste and Supplementary Cementitious Materials in Concrete: Characterization, Properties and Applications, 417–460. Elsevier. https://doi.org/10.1016/B978-0-08-102156-9.00013-4.
  • Sohail, M. I., M. Z. Rehman, M. Rizwan, S. Ali, M. A. Ayub, T. Aziz, M. Saqib, and G. Murtaza. 2020. “Effect of Biochars, Biogenic, and Inorganic Amendments on Dissolution and Kinetic Release of Phytoavailable Silicon in Texturally Different Soils Under Submerged Conditions.” Arabian Journal of Geosciences 13:376. https://doi.org/10.007/s12517-020-05399-3.
  • Sun, J., F. He, Y. Pan, and Z. Zhang. 2017. “Effects of Pyrolysis Temperature and Residence Time on Physicochemical Properties of Different Biochar Types.” Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 67 (1): 12–22. https://doi.org/10.1080/09064710.2016.1214745.
  • Todkar, B. S., S. M. Deshmukh, and O. A. Deorukhka. 2016. “Extraction of Silica from Rice Husk.” International Journal of Engineering Research and Development 12 (3): 69–74 .
  • Tsujimoto, Y., S. Muranaka, K. Saito, and H. Asia. 2014. “Limited Si-Nutrient Status of Rice Plants in Relation to Plant-Available Si of Soils, Nitrogen Fertilizer Application, and Rice-Growing Environments Across Sub-Saharan Africa.” Field Crops Research 155:1–9. https://doi.org/10.1016/j.fcr.2013.10.003.
  • Wada, I., T. Kawano, N. Maeda, and M. Kawakami. 1999. “Process Technology and Development of Furnace for Production of High Reactive Rice Husk Ash.” Journal of the Japanese Society of Agricultural Machinery 61 (4): 125–132. https://doi.org/10.11357/jsam1937.61.4_125 .
  • Wakatsuki, T., and N. Iwashima. (2022). “Rice Green Revolution Statistics of Sub-Saharan Africa and Asia During 1961 -2020.” Accessed June 4, 2023. http://www.kinki-ecotech.jp/download/sawahtech-1-17sep22.pdf/.
  • Wang, Y., X. Xiao, Y. Xu, and B. Chen. 2019. “Environmental Effects of Silicon within Biochar (Sichar) and Carbon-Silicon Coupling Mechanisms: A Critical Review.” Environmental Science and Technology 53:13570–13582. https://doi.org/10.1021/acs.est.9b03607.
  • Worldometer. 2022. “World Population by Region.” Accessed August 25, 2022 https://www.worldometers.info/world-population/population-by-region/.
  • Xiao, X., B. Chen, and L. Zhu. 2014. “Transformation, Morphology and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochar Under Different Pyrolytic Temperatures.” Environmental Science & Technology 48:3411–3419. https://doi.org/10.1021/es405676h.
  • Yanai, M., Y. Yoshida, and Y. Shimizu. 1996. “Colorimetric Determination of Available Silicate in Soil Extracted by Acetate Buffer with Ascorbic Acid Powder.” Journal of Soil Science and Plant Nutrition 67 (3): 273–278. https://doi.org/10.20710/dojo.67.3_273.
  • Yefremova, S., A. Zharmenov, Y. Sukharnikov, L. Bunchuk, A. Kablanbekov, K. Anarbekov, T. Kulik, et al. 2019. “Rice Husk Hydrolytic Lignin Transformation in Carbonization Process.” Molecules 24 (17): 3075. https://doi.org/10.3390/molecules24173075.
  • Yoshida, S. 1975. “The Physiology of Silicon in Rice.” Technical Bulletin 25:1–27. https://nla.gov.au/nla.cat-vn4555774.
  • Yoshida, S., Y. Ohnishi, and K. Kitagishi. 1962. “Chemical Forms, Mobility, and Deposition of Silicon in Rice Plant.” Soil Science & Plant Nutrition 8:107–111. https://doi.org/10.1080/00380768.1962.10430992.
  • Yousaf, B., G. Liu, Q. Abbas, M. U. Ali, R. Wang, R. Ahmed, C. Wang, M. I. Al-Wabel, and A. R. A. Usman. 2018. “Operational Control on Environmental Safety of Potentially Toxic Elements During Thermalconversion of Metal-Accumulator Invasive Ragweed to Biochar.” Journal of Cleaner Production 195:458–469. https://doi.org/10.1016/j.jclepro.2018.05.246.
  • Zhang, H., R. Xiao, H. Huang, and G. Xiao. 2009. “Comparison of Non-Catalytic and Catalytic Fast Pyrolysis of Corncob in a Fluidized Bed Reactor.” Bioresource Technology 100 (3): 1428–1434. https://doi.org/10.1016/j.biortech.2008.08.031.
  • Zou, Y., and T. Yang. 2019. “Rice Husk Ash and Their Applications.” Rice Bran Rice Bran Oil 1:207–246. https://doi.org/10.1016/B978-0-12-812828-2.00009-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.