544
Views
0
CrossRef citations to date
0
Altmetric
Soil Biology

Ecoenzymatic stoichiometry as a temporally integrated indicator of nutrient availability in soils

ORCID Icon, , ORCID Icon, , , & show all
Pages 246-269 | Received 13 Dec 2023, Accepted 06 Apr 2024, Published online: 16 Apr 2024

References

  • Acosta-Martínez, V., and M. A. Tabatabai. 2011. “Phosphorus Cycle Enzymes.” In Methods of Soil Enzymology, edited by R. P. Dick, 161–183. Madison: Soil Science Society of America.
  • Acuña, J. J., P. Durán, L. M. Lagos, A. Ogram, M. L. Mora, and M. A. Jorquera. 2016. “Bacterial Alkaline Phosphomonoesterase in the Rhizospheres of Plants Grown in Chilean Extreme Environments.” Biology and Fertility of Soils 52 (6): 763–773. https://doi.org/10.1007/s00374-016-1113-9.
  • Allison, C., and G. T. Macfarlane. 1990. “Regulation of Protease Production in Clostridium Sporogenes.” Applied and Environmental Microbiology 56 (11): 3485–3490. https://doi.org/10.1128/aem.56.11.3485-3490.1990.
  • Allison, S. D., and P. M. Vitousek. 2005. “Responses of Extracellular Enzymes to Simple and Complex Nutrient Inputs.” Soil Biology and Biochemistry 37 (5): 937–944. https://doi.org/10.1016/j.soilbio.2004.09.014.
  • Allison, S. D., M. N. Weintraub, T. B. Gartner, and M. P. Waldrop. 2011. “Evolutionary-Economic Principles as Regulators of Soil Enzyme Production and Ecosystem Function.” In Soil Enzymology, edited by G. Shukla and A. Varma, 229–243. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-14225-3_12.
  • Ando, K., N. Yamaguchi, Y. Nakamura, M. Kasuya, and K. Taki. 2021. “Speciation of Phosphorus Accumulated in Fertilized Cropland of Aichi Prefecture in Japan with Different Soil Properties by Sequential Chemical Extraction and P K-Edge XANES.” Soil Science and Plant Nutrition 67 (2): 150–161. https://doi.org/10.1080/00380768.2021.1874249.
  • Arima, K., T. Sakamoto, C. Araki, and G. Tamura. 1972. “Production of Extracellular L-Asparaginases by Microorganisms.” Agricultural and Biological Chemistry 36 (3): 356–361. https://doi.org/10.1080/00021369.1972.10860270.
  • Arnosti, C., C. Bell, D. L. Moorhead, R. L. Sinsabaugh, A. D. Steen, M. Stromberger, M. Wallenstein, and M. N. Weintraub. 2014. “Extracellular Enzymes in Terrestrial, Freshwater, and Marine Environments: Perspectives on System Variability and Common Research Needs.” Biogeochemistry 117 (1): 5–21. https://doi.org/10.1007/s10533-013-9906-5.
  • Aro, N., T. Pakula, and M. Penttilä. 2005. “Transcriptional Regulation of Plant Cell Wall Degradation by Filamentous Fungi.” FEMS Microbiology Reviews 29 (4): 719–739. https://doi.org/10.1016/j.femsre.2004.11.006.
  • Atkinson, M. R., and S. H. Fisher. 1991. “Identification of Genes and Gene Products Whose Expression Is Activated During Nitrogen-Limited Growth in Bacillus subtilis.” Journal of Bacteriology 173 (1): 23–27. https://doi.org/10.1128/jb.173.1.23-27.1991.
  • Averill, C., and A. Classen. 2014. “Divergence in Plant and Microbial Allocation Strategies Explains Continental Patterns in Microbial Allocation and Biogeochemical Fluxes.” Ecology Letters 17 (10): 1202–1210. https://doi.org/10.1111/ele.12324.
  • Bahn, Y.-S., C. Xue, A. Idnurm, J. C. Rutherford, J. Heitman, and M. E. Cardenas. 2007. “Sensing the Environment: Lessons from Fungi.” Nature Reviews Microbiology 5 (1): 57–69. https://doi.org/10.1038/nrmicro1578.
  • Bajouco, R., I. Fraga, J. Pinheiro, and J. Coutinho. 2020. “Acid Phosphomonoesterase and β-Glucosidase Activities in Volcanic Soils Under Permanent Fertilized Pastures: Distribution Profile and Microbial Effort Toward P Acquisition.” Soil Science and Plant Nutrition 66 (5): 734–744. https://doi.org/10.1080/00380768.2020.1814114.
  • Baldrian, P., and V. Valášková. 2008. “Degradation of Cellulose by Basidiomycetous Fungi.” FEMS Microbiology Reviews 32 (3): 501–521. https://doi.org/10.1111/j.1574-6976.2008.00106.x.
  • Ballard, R., and W. L. Pritchett. 1975. “Evaluation of Soil Testing Methods for Predicting Growth and Response of Pinus Elliottii to Phosphorus Fertilization.” Soil Science Society of America, Proceedings 39 (1): 132–136. https://doi.org/10.2136/sssaj1975.03615995003900010034x.
  • Barak, P., J. A. E. Molina, A. Hadas, and C. E. Clapp. 1990. “Mineralization of Amino Acids and Evidence of Direct Assimilation of Organic Nitrogen.” Soil Science Society of America Journal 54 (3): 769–774. https://doi.org/10.2136/sssaj1990.03615995005400030024x.
  • Barrow, N. J. 1967. “Studies on Extraction and on Availability to Plants of Adsorbed Plus Soluble Sulfate.” Soil Science 104 (4): 242–249. https://doi.org/10.1097/00010694-196710000-00003.
  • Bárta, J., P. Šlajsová, K. Tahovská, T. Picek, and H. Šantrůčková. 2014. “Different Temperature Sensitivity and Kinetics of Soil Enzymes Indicate Seasonal Shifts in C, N and P Nutrient Stoichiometry in Acid Forest Soil.” Biogeochemistry 117 (2–3): 525–537. https://doi.org/10.1007/s10533-013-9898-1.
  • Basile-Doelsch, I., J. Balesdent, and S. Pellerin. 2020. “Reviews and Syntheses: The Mechanisms Underlying Carbon Storage in Soil.” Biogeosciences 17 (21): 5223–5242. https://doi.org/10.5194/bg-17-5223-2020.
  • Beegle, D. 2005. “Assessing Soil Phosphorus for Crop Production by Soil Testing.” In Phosphorus: Agriculture and the Environment, edited by J. T. Sims and A. N. Sharpley, 123–143. Madison, Wisconsin: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.
  • Beier, S., and S. Bertilsson. 2013. “Bacterial Chitin Degradation—Mechanisms and Ecophysiological Strategies.” Frontiers in Microbiology 4:149. https://doi.org/10.3389/fmicb.2013.00149.
  • Bergkemper, F., A. Schöler, M. Engel, F. Lang, J. Krüger, M. Schloter, and S. Schulz. 2016. “Phosphorus Depletion in Forest Soils Shapes Bacterial Communities Towards Phosphorus Recycling Systems.” Environmental Microbiology 18 (6): 1988–2000. https://doi.org/10.1111/1462-2920.13188.
  • Berlemont, R. 2017. “Distribution and Diversity of Enzymes for Polysaccharide Degradation in Fungi.” Scientific Reports 7 (1): 222. https://doi.org/10.1038/s41598-017-00258-w.
  • Berlemont, R., and A. C. Martiny. 2013. “Phylogenetic Distribution of Potential Cellulases in Bacteria.” Applied and Environmental Microbiology 79 (5): 1545–1554. https://doi.org/10.1128/AEM.03305-12.
  • Binkley, D., and R. F. Fisher. 2013. Ecology and Management of Forest Soils. 4th ed. Chichester: Wiley-Blackwell.
  • Binkley, D., and S. C. Hart. 1989. “The Components of Nitrogen Availability Assessments in Forest Soils.” Advances in Soil Science 10:57–112. https://doi.org/10.1007/978-1-4613-8847-0_2.
  • Binkley, D., and P. Vitousek. 1989. “Soil Nutrient Availability.” In Plant Physiological Ecology: Field Methods and Instrumentation, edited by R. W. Pearcy, J. R. Ehleringer, H. A. Mooney, and P. W. Rundel, 75–96. London: Chapman and Hall.
  • Blagodatskaya, E., and Y. Kuzyakov. 2013. “Active Microorganisms in Soil: Critical Review of Estimation Criteria and Approaches.” Soil Biology and Biochemistry 67:192–211. https://doi.org/10.1016/j.soilbio.2013.08.024.
  • Bolan, N. S., D. C. Adriano, A. Kunhikrishnan, T. James, R. McDowell, and N. Senesi. 2011. “Dissolved Organic Matter: Biogeochemistry, Dynamics, and Environmental Significance in Soils.” Advances in Agronomy 110:1–75. https://doi.org/10.1016/B978-0-12-385531-2.00001-3.
  • Brzostek, E. R., and A. C. Finzi. 2012. “Seasonal Variation in the Temperature Sensitivity of Proteolytic Enzyme Activity in Temperate Forest Soils.” Journal of Geophysical Research 117 (G1): G01018. https://doi.org/10.1029/2011JG001688.
  • Buckley, S., D. Allen, R. Brackin, S. Jämtgård, T. Näsholm, and S. Schmidt. 2019. “Microdialysis As an In Situ Technique for Sampling Soil Enzymes.” Soil Biology and Biochemistry 135:20–27. https://doi.org/10.1016/j.soilbio.2019.04.007.
  • Bundy, L. G., H. Tunney, and A. D. Halvorson. 2005. “Agronomic Aspect of Phosphorus Management.” In Phosphorus: Agriculture and the Environment, edited by J. T. Sims and A. N. Sharpley, 685–727. Madison, Wisconsin: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.
  • Burns, R. G., J. L. DeForest, J. Marxsen, R. L. Sinsabaugh, M. E. Stromberger, M. D. Wallenstein, M. N. Weintraub, and A. Zoppini. 2013. “Soil Enzymes in a Changing Environment: Current Knowledge and Future Directions.” Soil Biology and Biochemistry 58:216–234. https://doi.org/10.1016/j.soilbio.2012.11.009.
  • Camenzind, T., A. Lehmann, J. Ahland, S. Rumpel, and M. C. Rillig. 2020. “Trait-Based Approaches Reveal Fungal Adaptations to Nutrient-Limiting Conditions.” Environmental Microbiology 22 (8): 3548–3560. https://doi.org/10.1111/1462-2920.15132.
  • Carpenter, S. R. 2005. “Eutrophication of Aquatic Ecosystems: Bistability and Soil Phosphorus.” Proceedings of the National Academy of Sciences of the United States of America 102 (29): 10002–10005. https://doi.org/10.1073/pnas.0503959102.
  • Castle, S. C., B. W. Sullivan, J. Knelman, E. Hood, D. R. Nemergut, S. K. Schmidt, and C. C. Cleveland. 2017. “Nutrient Limitation of Soil Microbial Activity During the Earliest Stages of Ecosystem Development.” Oecologia 185 (3): 513–524. https://doi.org/10.1007/s00442-017-3965-6.
  • Cezairliyan, B., and F. M. Ausubel. 2017. “Investment in Secreted Enzymes During Nutrient-Limited Growth Is Utility Dependent.” Proceedings of the National Academy of Sciences of the United States of America 114 (37): E7796–E7802. https://doi.org/10.1073/pnas.1708580114.
  • Chapin, F. S., III, P. A. Matson, and P. M. Vitousek. 2011. Principles of Terrestrial Ecosystem Ecology. 2nd ed. New York: Springer.
  • Chen, X., Y. Hu, S. Feng, Y. Rui, Z. Zhang, H. He, X. He, T. Ge, J. Wu, and Y. Su. 2018b. “Lignin and Cellulose Dynamics with Straw Incorporation in Two Contrasting Cropping Soils.” Scientific Reports 8 (1): 1633. https://doi.org/10.1038/s41598-018-20134-5.
  • Chen, X., N. Jiang, L. M. Condron, K. E. Dunfield, Z. Chen, J. Wang, and L. Chen. 2019a. “Impact of Long-Term Phosphorus Fertilizer Inputs on Bacterial phoD Gene Community in a Maize Field, Northeast China.” Science of the Total Environment 669:1011–1018. https://doi.org/10.1016/j.scitotenv.2019.03.172.
  • Chen, X., N. Jiang, L. M. Condron, K. E. Dunfield, Z. Chen, J. Wang, and L. Chen. 2019b. “Soil Alkaline Phosphatase Activity and Bacterial phoD Gene Abundance and Diversity Under Long-Term Nitrogen and Manure Inputs.” Geoderma 349:36–44. https://doi.org/10.1016/j.geoderma.2019.04.039.
  • Chen, H., D. Li, J. Zhao, K. Xiao, and K. Wang. 2018a. “Effects of Nitrogen Addition on Activities of Soil Nitrogen Acquisition Enzymes: A Meta-Analysis.” Agriculture, Ecosystems and Environment 252:126–131. https://doi.org/10.1016/j.agee.2017.09.032.
  • Chen, J., and R. L. Sinsabaugh. 2021. “Linking Microbial Functional Gene Abundance and Soil Extracellular Enzyme Activity: Implications for Soil Carbon Dynamics.” Global Change Biology 27 (7): 1322–1325. https://doi.org/10.1111/gcb.15506.
  • Choi, S.-K., and M. H. Saier Jr. 2005. “Regulation of pho Regulon Gene Expression by the Carbon Control Protein A, CcpA, in Bacillus subtilis.” Journal of Molecular Microbiology and Biotechnology 10 (1): 40–50. https://doi.org/10.1159/000090347.
  • Chróst, R. J. 1991. “Environmental Control of the Synthesis and Activity of Aquatic Microbial Ectoenzymes.” In Microbial Enzymes in Aquatic Environments, edited by R. J. Chróst, 29–59. New York: Springer-Verlag.
  • Colman, A. S., R. E. Blake, D. M. Karl, M. L. Fogel, and K. K. Turekian. 2005. “Marine Phosphate Oxygen Isotopes and Organic Matter Remineralization in the Oceans.” Proceedings of the National Academy of Sciences of the United States of America 102 (37): 13023–13028. https://doi.org/10.1073/pnas.0506455102.
  • Cordell, D., and S. White. 2014. “Life’s Bottleneck: Sustaining the world’s Phosphorus for a Food Secure Future.” Annual Review of Environment and Resources 39:161–188. https://doi.org/10.1146/annurev-environ-010213-113300. 1
  • Cui, Y., H. Bing, D. L. Moorhead, M. Delgado-Baquerizo, L. Ye, J. Yu, S. Zhang, et al. 2022a. “Ecoenzymatic Stoichiometry Reveals Widespread Soil Phosphorus Limitation to Microbial Metabolism Across Chinese Forests.” Communications Earth & Environment 3 (1): 184. https://doi.org/10.1038/s43247-022-00523-5.
  • Cui, Y., D. L. Moorhead, S. Peng, and R. L. Sinsabaugh. 2023a. “New Insights into the Patterns of Ecoenzymatic Stoichiometry in Soil and Sediment.” Soil Biology and Biochemistry 177:108910. https://doi.org/10.1016/j.soilbio.2022.108910.
  • Cui, Y., S. Peng, M. Delgado-Baquerizo, M. C. Rillig, C. Terrer, B. Zhu, X. Jing, et al. 2023b. “Microbial Communities in Terrestrial Surface Soils Are Not Widely Limited by Carbon.” Global Change Biology 29 (15): 4412–4429. https://doi.org/10.1111/gcb.16765.
  • Cui, J., S. Zhang, X. Wang, X. Xu, C. Ai, G. Liang, P. Zhu, and W. Zhou. 2022b. “Enzymatic Stoichiometry Reveals Phosphorus Limitation-Induced Changes in the Soil Bacterial Communities and Element Cycling: Evidence from a Long-Term Field Experiment.” Geoderma 426:116124. https://doi.org/10.1016/j.geoderma.2022.116124.
  • DeAngelis, K. M., S. E. Lindow, and M. K. Firestone. 2008. “Bacterial Quorum Sensing and Nitrogen Cycling in Rhizosphere Soil.” FEMS Microbiology Ecology 66 (2): 197–207. https://doi.org/10.1111/j.1574-6941.2008.00550.x.
  • Demoling, F., D. Figueroa, and E. Bååth. 2007. “Comparison of Factors Limiting Bacterial Growth in Different Soils.” Soil Biology and Biochemistry 39 (10): 2485–2495. https://doi.org/10.1016/j.soilbio.2007.05.002.
  • Denison, S. H. 2000. “pH Regulation of Gene Expression in Fungi.” Fungal Genetics and Biology 29 (2): 61–71. https://doi.org/10.1006/fgbi.2000.1188.
  • De Troyer, I., F. Amery, C. Van Moorleghem, E. Smolders, and R. Merckx. 2011. “Tracing the Source and Fate of Dissolved Organic Matter in Soil After Incorporation of a 13C Labelled Residue: A Batch Incubation Study.” Soil Biology and Biochemistry 43 (3): 513–519. https://doi.org/10.1016/j.soilbio.2010.11.016.
  • Dick, R. P., and R. G. Burns. 2011. “A Brief History of Soil Enzymology Research.” In Methods of Soil Enzymology, edited by R. P. Dick, 1–34. Madison: Soil Science Society of America.
  • Dick, R. P., L. K. Dick, S. Deng, X. Li, E. Kandeler, C. Poll, C. Freeman, et al. 2018. “Cross-Laboratory Comparison of Fluorimetric Microplate and Colorimetric Bench-Scale Soil Enzyme Assays.” Soil Biology & Biochemistry 121:240–248. https://doi.org/10.1016/j.soilbio.2017.12.020.
  • Dodgson, K. S., G. F. White, and J. W. Fitzgerald. 1982. Sulfatases of Microbial Origin. Vol. II. Boca Raton, Florida: CRC Press.
  • Dove, N. C., K. Arogyaswamy, S. A. Billings, J. K. Botthoff, C. J. Carey, C. Cisco, J. L. DeForest, et al. 2020. “Continental-Scale Patterns of Extracellular Enzyme Activity in the Subsoil: An Overlooked Reservoir of Microbial Activity.” Environmental Research Letters 15 (10): 1040a1. https://doi.org/10.1088/1748-9326/abb0b3.
  • Duhamel, S., J. M. Diaz, J. C. Adams, K. Djaoudi, V. Steck, and E. M. Waggoner. 2021. “Phosphorus as an Integral Component of Global Marine Biogeochemistry.” Nature Geoscience 14 (6): 359–368. https://doi.org/10.1038/s41561-021-00755-8.
  • Dunlop, P. C., G. M. Meyer, and R. J. Roon. 1980. “Reactions of Asparaginase II of Saccharomyces cerevisiae. A Mechanistic Analysis of Hydrolysis and Hydroxylaminolysis.” Journal of Biological Chemistry 255 (4): 1542–1546. https://doi.org/10.1016/S0021-9258(19)86066-0.
  • Dunlop, P. C., and R. J. Roon. 1975. “L-Asparaginase of Saccharomyces cerevisiae: An Extracellular Enzyme.” Journal of Bacteriology 122 (3): 1017–1024. https://doi.org/10.1128/jb.122.3.1017-1024.1975.
  • Ekenler, M., and M. A. Tabatabai. 2004. “Arylamidase and Amidohydrolases in Soils as Affected by Liming and Tillage Systems.” Soil and Tillage Research 77 (2): 157–168. https://doi.org/10.1016/j.still.2003.12.007.
  • Fatemi, F. R., I. J. Fernandez, K. S. Simon, and D. B. Dail. 2016. “Nitrogen and Phosphorus Regulation of Soil Enzyme Activities in Acid Forest Soils.” Soil Biology and Biochemistry 98:171–179. https://doi.org/10.1016/j.soilbio.2016.02.017.
  • Fierer, N., S. A. Wood, and C. P. B. de Mesquita. 2021. “How Microbes Can, and Cannot, Be Used to Assess Soil Health.” Soil Biology and Biochemistry 153:108111. https://doi.org/10.1016/j.soilbio.2020.108111.
  • Fisher, S. H., and A. L. Sonenshein. 1991. “Control of Carbon and Nitrogen Metabolism in Bacillus subtilis.” Annual Review of Microbiology 45 (1): 107–135. https://doi.org/10.1146/annurev.mi.45.100191.000543.
  • Fisher, S. H., and L. V. Wray Jr. 2002. “Bacillus subtilis 168 Contains Two Differentially Regulated Genes Encoding L-Asparaginase.” Journal of Bacteriology 184 (8): 2148–2154. https://doi.org/10.1128/JB.184.8.2148-2154.2002.
  • Fixen, P. E., and J. H. Grove. 1990. “Testing Soils for Phosphorus.” In Soil Testing and Plant Analysis, edited by R. L. Westerman, 141–180. 3rd ed. Madison, Wisconsin: Soil Science Society of America.
  • Forsberg, H., and P. O. Ljungdahl. 2001. “Sensors of Extracellular Nutrients in Saccharomyces cerevisiae.” Current Genetics 40 (2): 91–109. https://doi.org/10.1007/s002940100244.
  • Fraser, T. D., D. H. Lynch, E. Bent, M. H. Entz, and K. E. Dunfield. 2015b. “Soil Bacterial phoD Gene Abundance and Expression in Response to Applied Phosphorus and Long-Term Management.” Soil Biology and Biochemistry 88:137–147. https://doi.org/10.1016/j.soilbio.2015.04.014.
  • Fraser, T., D. H. Lynch, M. H. Entz, and K. E. Dunfield. 2015a. “Linking Alkaline Phosphatase Activity with Bacterial phoD Gene Abundance in Soil from a Long-Term Management Trial.” Geoderma 257258:115–122. https://doi.org/10.1016/j.geoderma.2014.10.016.
  • Fujita, K., T. Kunito, J. Matsushita, K. Nakamura, H. Moro, S. Yoshida, H. Toda, S. Otsuka, K. Nagaoka, and J. Paz-Ferreiro. 2018. ““Nitrogen Supply Rate Regulates Microbial Resource Allocation for Synthesis of Nitrogen-Acquiring Enzymes.” PLoS ONE 13 (8): e0202086. https://doi.org/10.1371/journal.pone.0202086.
  • Fujita, K., T. Kunito, H. Moro, H. Toda, S. Otsuka, and K. Nagaoka. 2017. “Microbial Resource Allocation for Phosphatase Synthesis Reflects the Availability of Inorganic Phosphorus Across Various Soils.” Biogeochemistry 136 (3): 325–339. https://doi.org/10.1007/s10533-017-0398-6.
  • Fujita, K., T. Kunito, S. Otsuka, and K. Nagaoka. 2020. “Anaerobic Soil Disinfestation Using Diluted Ethanol Increases Phosphorus Availability in Arable Andosols.” Biology and Fertility of Soils 56 (7): 927–941. https://doi.org/10.1007/s00374-020-01472-x.
  • Fujita, K., Y. Miyabara, and T. Kunito. 2019a. “Microbial Biomass and Ecoenzymatic Stoichiometries Vary in Response to Nutrient Availability in an Arable Soil.” European Journal of Soil Biology 91:1–8. https://doi.org/10.1016/j.ejsobi.2018.12.005.
  • Fujita, K., H. Moro, S. Otsuka, K. Nagaoka, and T. Kunito. 2019b. “The Relationship Between Nutrient Availability and Microbial Enzyme Synthesis in Soils: An Emphasis on Resource Allocation Model.” Soil Microorganisms 73 (1): 10–23. https://doi.org/10.18946/jssm.73.1_10. (in Japanese)
  • Gahan, J., and A. Schmalenberger. 2014. “The Role of Bacteria and Mycorrhiza in Plant Sulfur Supply.” Frontiers in Plant Science 5:723. https://doi.org/10.3389/fpls.2014.00723.
  • Gardner, J. G., and H. J. Schreier. 2021. “Unifying Themes and Distinct Features of Carbon and Nitrogen Assimilation by Polysaccharide-Degrading Bacteria: A Summary of Four Model Systems.” Applied Microbiology and Biotechnology 105 (21–22): 8109–8127. https://doi.org/10.1007/s00253-021-11614-2.
  • Geisseler, D., and W. R. Horwath. 2008. “Regulation of Extracellular Protease Activity in Soil in Response to Different Sources and Concentrations of Nitrogen and Carbon.” Soil Biology and Biochemistry 40 (12): 3040–3048. https://doi.org/10.1016/j.soilbio.2008.09.001.
  • Geisseler, D., and W. R. Horwath. 2009. “Relationship Between Carbon and Nitrogen Availability and Extracellular Enzyme Activities in Soil.” Pedobiologia 53 (1): 87–98. https://doi.org/10.1016/j.pedobi.2009.06.002.
  • Geisseler, D., W. R. Horwath, R. G. Joergensen, and B. Ludwig. 2010. “Pathways of Nitrogen Utilization by Soil Microorganisms – A Review.” Soil Biology and Biochemistry 42 (12): 2058–2067. https://doi.org/10.1016/j.soilbio.2010.08.021.
  • Geisseler, D., R. G. Joergensen, and B. Ludwig. 2012. “Temporal Effect of Straw Addition on Amino Acid Utilization by Soil Microorganisms.” European Journal of Soil Biology 53:107–113. https://doi.org/10.1016/j.ejsobi.2012.09.006.
  • Gianfreda, L., and P. Ruggiero. 2006. “Enzyme activities in soil.” In Nucleic Acids and Proteins in Soil, edited by P. Nannipieri and K. Smalla, 257–311. Berlin: Springer-Verlag.
  • Golden, K. J., and R. W. Bernlohr. 1985. “Nitrogen Catabolite Repression of the L-Asparaginase of Bacillus licheniformis.” Journal of Bacteriology 164 (2): 938–940. https://doi.org/10.1128/jb.164.2.938-940.1985.
  • Greenfield, L. M., P. W. Hill, F. M. Seaton, E. Paterson, E. M. Baggs, and D. L. Jones. 2020. “Is Soluble Protein Mineralisation and Protease Activity in Soil Regulated by Supply or Demand?” Soil Biology & Biochemistry 150:108007. https://doi.org/10.1016/j.soilbio.2020.108007.
  • Greiner, R. 2007. “Phytate-Degrading Enzymes: Regulation of Synthesis in Microorganisms and Plants.” In Inositol Phosphates: Linking Agriculture and the Environment, edited by B. L. Turner, A. E. Richardson, and E. J. Mullaney, 78–96. Wallingford: CAB International.
  • Gressel, N., and J. G. McColl. 1997. “Phosphorus Mineralization and Organic Matter Decomposition: A Critical Review.” In Driven by Nature: Plant Litter Quality and Decomposition, edited by G. Cadisch and K. E. Giller, 297–309. Wallingford, UK: CAB International.
  • Griffin, T. S. 2008. “Nitrogen Availability.” In Nitrogen in Agricultural Systems, edited by J. S. Schepers and W. R. Raun, 613–646. Madison: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
  • Hedley, M. J. 2008. “Techniques for Assessing Nutrient Bioavailability In Soils: Current And Future Issues.” In Chemical Bioavailability in Terrestrial Environments Developments in Soil Science, edited by R. Naidu, 283–327. Vol. 32. Amsterdam: Elsevier.
  • Hemingway, J. D., D. H. Rothman, K. E. Grant, S. Z. Rosengard, T. I. Eglinton, L. A. Derry, and V. V. Galy. 2019. “Mineral Protection Regulates Long-Term Global Preservation of Natural Organic Carbon.” Nature 570 (7760): 228–231. https://doi.org/10.1038/s41586-019-1280-6.
  • Hermans, S. M., H. L. Buckley, B. S. Case, F. Curran-Cournane, M. Taylor, G. Lear, and F. E. Loeffler. 2017. “Bacteria As Emerging Indicators of Soil Condition.” Applied and Environmental Microbiology 83 (1): e02826–16. https://doi.org/10.1128/AEM.02826-16.
  • Hill, B. H., C. M. Elonen, L. R. Seifert, A. A. May, and E. Tarquinio. 2012. “Microbial Enzyme Stoichiometry and Nutrient Limitation in US Streams and Rivers.” Ecological Indicators 18:540–551. https://doi.org/10.1016/j.ecolind.2012.01.007.
  • Hill, J. E., and A. E. Richardson. 2007. “Isolation and Assessment of Microorganisms That Utilize Phytate.” In Inositol Phosphates: Linking Agriculture and the Environment, edited by B. L. Turner, A. E. Richardson, and E. J. Mullaney, 61–77. Wallingford: CAB International.
  • Hmelo, L. R., T. J. Mincer, and B. A. S. Van Mooy. 2011. “Possible Influence of Bacterial Quorum Sensing on the Hydrolysis of Sinking Particulate Organic Carbon in Marine Environments.” Environmental Microbiology Reports 3 (6): 682–688. https://doi.org/10.1111/j.1758-2229.2011.00281.x.
  • Hobbie, J. E., and E. A. Hobbie. 2013. “Microbes in Nature Are Limited by Carbon and Energy: The Starving-Survival Lifestyle in Soil and Consequences for Estimating Microbial Rates.” Frontiers in Microbiology 4:324. https://doi.org/10.3389/fmicb.2013.00324.
  • Hofmockel, K. S., N. Fierer, B. P. Colman, and R. B. Jackson. 2010. “Amino Acid Abundance and Proteolytic Potential in North American Soils.” Oecologia 163 (4): 1069–1078. https://doi.org/10.1007/s00442-010-1601-9.
  • Howard, J. B., and F. H. Carpenter. 1972. “L-Asparaginase from Erwinia Carotovora.” Journal of Biological Chemistry 247 (4): 1020–1030. https://doi.org/10.1016/S0021-9258(19)45610-X.
  • Hsieh, Y.-J., and B. L. Wanner. 2010. “Global Regulation by the Seven-Component Pi Signaling System.” Current Opinion in Microbiology 13 (2): 198–203. https://doi.org/10.1016/j.mib.2010.01.014.
  • Huang, W., Y. Kuzyakov, S. Niu, Y. Luo, B. Sun, J. Zhang, and Y. Liang. 2023. “Drivers of Microbially and Plant-Derived Carbon in Topsoil and Subsoil.” Global Change Biology 29 (22): 6188–6200. https://doi.org/10.1111/gcb.16951.
  • Ito, T., N. Kikawa, and M. Saigusa. 2011. “Phosphorus Sorption and Bioavailability in Allophanic and Non-Allophanic Andosols.” Pedologist 55 (2): 84–88. https://doi.org/10.18920/pedologist.55.2_84. in Japanese.
  • Jarosch, K. A., E. Kandeler, E. Frossard, and E. K. Bünemann. 2019. “Is the Enzymatic Hydrolysis of Soil Organic Phosphorus Compounds Limited by Enzyme or Substrate Availability?” Soil Biology & Biochemistry 139:107628. https://doi.org/10.1016/j.soilbio.2019.107628.
  • Jian, S., J. Li, J. Chen, G. Wang, M. A. Mayes, K. E. Dzantor, D. Hui, and Y. Luo. 2016. “Soil Extracellular Enzyme Activities, Soil Carbon and nitrogen storage under nitrogen fertilization: A meta-analysis.” Soil Biology & Biochemistry 101:32–43. https://doi.org/10.1016/j.soilbio.2016.07.003.
  • Jing, X., X. Chen, J. Fang, C. Ji, H. Shen, C. Zheng, and B. Zhu. 2020. “Soil Microbial Carbon and Nutrient Constraints Are Driven More by Climate and Soil Physicochemical Properties Than by Nutrient Addition in Forest Ecosystems.” Soil Biology and Biochemistry 141:107657. https://doi.org/10.1016/j.soilbio.2019.107657.
  • Jones, M. B. 1986. “Sulfur Availability Indexes.” In Sulfur in Agriculture, edited by M. A. Tabatabai, 549–566. Madison: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
  • Jones, D. L., and E. Oburger. 2011. “Solubilization of Phosphorus by Soil Microorganisms.” In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling (Soil Biology 26), edited by E. K. Bünemann, A. Oberson, and E. Frossard, 169–198. Berlin: Springer-Verlag.
  • Kamprath, E. J., and M. E. Watson. 1980. “Conventional Soil and Tissue Tests for Assessing the Phosphorus Status of Soils.” In The Role of Phosphorus in Agriculture, edited by F. E. Khasawneh, E. C. Sample, and E. J. Kamprath, 433–469. Madison, Wisconsin: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.
  • Karl, D. M. 2014. “Microbially Mediated Transformations of Phosphorus in the Sea: New Views of an Old Cycle.” Annual Review of Marine Science 6 (1): 279–337. https://doi.org/10.1146/annurev-marine-010213-135046.
  • Kato, N., F. Zapata, and J. C. Fardeau. 1995. “The Ability of Chemical Extraction Methods to Estimate Plant-Available Soil P and a Better Understanding of P Availability of Fertilized Andosols by Using Isotopic Methods.” Soil Science and Plant Nutrition 41 (4): 781–789. https://doi.org/10.1080/00380768.1995.10417028.
  • Kertesz, M. A. 1999. “Riding the Sulfur Cycle – Metabolism of Sulfonates and Sulfate Esters in Gram-Negative Bacteria.” FEMS Microbiology Reviews 24 (2): 135–175. https://doi.org/10.1016/S0168-6445(99)00033-9.
  • Kertesz, M. A., E. Fellows, and A. Schmalenberger. 2007. “Rhizobacteria and Plant Sulfur Supply.” Advances in Applied Microbiology 62:235–268. https://doi.org/10.1016/S0065-2164(07)62008-5.
  • Keyhani, N. O., and S. Roseman. 1999. “Physiological Aspects of Chitin Catabolism in Marine Bacteria.” Biochimica et Biophysica Acta (BBA) - General Subjects 1473 (1): 108–122. https://doi.org/10.1016/S0304-4165(99)00172-5.
  • Kivlin, S. N., and C. V. Hawkes. 2020. “Spatial and Temporal Turnover of Soil Microbial Communities Is Not Linked to Function in a Primary Tropical Forest.” Ecology 101 (4): e02985. https://doi.org/10.1002/ecy.2985.
  • Klose, S., and M. A. Tabatabai. 1999. “Urease Activity of Microbial Biomass in Soils.” Soil Biology and Biochemistry 31 (2): 205–211. https://doi.org/10.1016/S0038-0717(98)00090-X.
  • Kunito, T., I. Isomura, H. Sumi, H.-D. Park, H. Toda, S. Otsuka, K. Nagaoka, K. Saeki, and K. Senoo. 2016. “Aluminum and Acidity Suppress Microbial Activity and Biomass in Acidic Forest Soils.” Soil Biology & Biochemistry 97:23–30. https://doi.org/10.1016/j.soilbio.2016.02.019.
  • Kunito, T., H. Kurita, M. Kumori, K. Sakaguchi, S. Nishizawa, K. Fujita, H. Moro, et al. 2022. “Microbial Synthesis of Arylsulfatase Depends on the Soluble and Adsorbed Sulfate Concentration in Soils.” European Journal of Soil Biology 111:103418. https://doi.org/10.1016/j.ejsobi.2022.103418.
  • Kunito, T., H. Moro, K. Fujita, K. Mise, K. Nagaoka, and S. Otsuka. 2019. “Microorganisms Enhancing Phosphorus Availability in Arable Soils.” Soil Microorganisms 73 (2): 41–54. https://doi.org/10.18946/jssm.73.2_41. (in Japanese).
  • Kunito, T., T. Shiroma, H. Moro, and H. Sumi. 2018. “Annual Variation in Soil Enzyme Activity in a Paddy Field: Soil Temperature and Nutrient Availability Are Important for Controlling Enzyme Activities.” Applied & Environmental Soil Science 2018:4093219. https://doi.org/10.1155/2018/4093219.
  • Kunito, T., T. Tobitani, H. Moro, and H. Toda. 2012a. “Phosphorus Limitation in Microorganisms Leads to High Phosphomonoesterase Activity in Acid Forest Soils.” Pedobiologia 55 (5): 263–270. https://doi.org/10.1016/j.pedobi.2012.05.002.
  • Kunito, T., M. Tsunekawa, S. Yoshida, H.-D. Park, H. Toda, K. Nagaoka, and K. Saeki. 2012b. “Soil Properties Affecting Phosphorus Forms and Phosphatase Activities in Japanese Forest Soils: Soil Microorganisms May Be Limited by Phosphorus.” Soil Science 177 (1): 39–46. https://doi.org/10.1097/SS.0b013e3182378153.
  • Kuo, S. 1996. “Phosphorus.” In Methods of Soil Analysis, Part 3, Chemical Methods, edited by D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner, 869–919. Madison: Soil Science Society of America, American Society of Agronomy.
  • Kyuma, K. 2004. Paddy Soil Science. Kyoto: Kyoto University Press.
  • Landi, L., G. Renella, L. Giagnoni, and P. Nannipieri. 2011. “Activities of Proteolytic Enzymes.” In Methods of Soil Enzymology, edited by R. P. Dick, 247–260. Madison: Soil Science Society of America.
  • Lehmann, J., C. M. Hansel, C. Kaiser, M. Kleber, K. Maher, S. Manzoni, N. Nunan, et al. 2020. “Persistence of Soil Organic Carbon Caused by Functional Complexity.” Nature Geoscience 13 (8): 529–534. https://doi.org/10.1038/s41561-020-0612-3.
  • Lemanski, K., M. Armbruster, and M. Bonkowski. 2019. “Linking Soil Microbial Nutrient Limitation to Fertilizer Regime and Sugar Beet Yield.” Plant and Soil 441 (1–2): 253–259. https://doi.org/10.1007/s11104-019-04114-w.
  • Lenhardt, K. R., L. Brandt, C. Poll, T. Rennert, and E. Kandeler. 2023. “Release of Glucose from Dissolved and Mineral-Bound Organic Matter by Enzymatic Hydrolysis.” European Journal of Soil Science 74 (5): e13421. https://doi.org/10.1111/ejss.13421.
  • Lennon, J. T., and S. E. Jones. 2011. “Microbial Seed Banks: The Ecological and Evolutionary Implications of Dormancy.” Nature Reviews Microbiology 9 (2): 119–130. https://doi.org/10.1038/nrmicro2504.
  • Levakov, I., Z. Ronen, H. Siebner, and O. Dahan. 2021. “Continuous in-Situ Measurement of Free Extracellular Enzyme Activity as Direct Indicator for Soil Biological Activity.” Soil Biology and Biochemistry 163:108448. https://doi.org/10.1016/j.soilbio.2021.108448.
  • Lidbury, I. D. E. A., C. Borsetto, A. R. J. Murphy, A. Bottrill, A. M. E. Jones, G. D. Bending, J. P. Hammond, Y. Chen, E. M. H. Wellington, and D. J. Scanlan. 2021. “Niche-Adaptation in Plant-Associated Bacteroidetes Favours Specialisation in Organic Phosphorus Mineralisation.” The ISME Journal 15 (4): 1040–1055. https://doi.org/10.1038/s41396-020-00829-2.
  • Lidbury, I. D. E. A., T. D. Fraser, A. R. J. Murphy, D. J. Scanlan, G. D. Bending, A. M. E. Jones, J. D. Moore, et al. 2017. “The ‘Known’ Genetic Potential for Microbial Communities to Degrade Organic Phosphorus Is Reduced in Low-pH Soils.” Microbiology Open 6 (4): e474. https://doi.org/10.1002/mbo3.474.
  • Lidbury, I. D. E. A., D. J. Scanlan, A. R. J. Murphy, J. A. Christie-Oleza, M. M. Aguilo-Ferretjans, A. Hitchcock, and T. J. Daniell. 2022. “A Widely Distributed Phosphate-Insensitive Phosphatase Presents a Route for Rapid Organophosphorus Remineralization in the Biosphere.” Proceedings of the National Academy of Sciences of the United States of America 119 (5): e2118122119. https://doi.org/10.1073/pnas.2118122119.
  • Liu, J., L. Fang, T. Qiu, H. Bing, Y. Cui, J. Sardans, E. Du, et al. 2023. “Disconnection Between Plant–Microbial Nutrient Limitation Across Forest Biomes.” Functional Ecology 37 (8): 2271–2281. https://doi.org/10.1111/1365-2435.14361.
  • López-Piñeiro, A., and A. Garcia-Navarro. 2001. “Phosphate Fractions and Availability in Vertisols of South-Western Spain.” Soil Science 166 (8): 548–556. https://doi.org/10.1097/00010694-200108000-00006.
  • Luo, H., R. Benner, R. A. Long, and J. Hu. 2009. “Subcellular Localization of Marine Bacterial Alkaline Phosphatases.” Proceedings of the National Academy of Sciences of the United States of America 106 (50): 21219–21223. https://doi.org/10.1073/pnas.0907586106.
  • Luo, G., N. Ling, P. Nannipieri, H. Chen, W. Raza, M. Wang, S. Guo, and Q. Shen. 2017. “Long-Term Fertilisation Regimes Affect the Composition of the Alkaline Phosphomonoesterase Encoding Microbial Community of a Vertisol and Its Derivative Soil Fractions.” Biology and Fertility of Soils 53 (4): 375–388. https://doi.org/10.1007/s00374-017-1183-3.
  • Luo, G., B. Sun, L. Li, M. Li, M. Liu, Y. Zhu, S. Guo, N. Ling, and Q. Shen. 2019. “Understanding How Long-Term Organic Amendments Increase Soil Phosphatase Activities: Insight into phoD- and phoC-Harboring Functional Microbial Populations.” Soil Biology & Biochemistry 139:107632. https://doi.org/10.1016/j.soilbio.2019.107632.
  • Maguire, R. O., W. J. Chardon, and R. R. Simard. 2005. “Assessing Potential Environmental Impacts of Soil Phosphorus by Soil Testing.” In Phosphorus: Agriculture and the Environment, edited by J. T. Sims and A. N. Sharpley, 145–180. Madison, Wisconsin: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.
  • Malik, A. A., J. B. H. Martiny, E. L. Brodie, A. C. Martiny, K. K. Treseder, and S. D. Allison. 2020. “Defining Trait-Based Microbial Strategies with Consequences for Soil Carbon Cycling Under Climate Change.” The ISME Journal 14 (1): 1–9. https://doi.org/10.1038/s41396-019-0510-0.
  • Margenot, A. J., J. Wade. 2023. “Getting the Basics Right on Soil Enzyme Activities: A Comment on Sainju. (2022).” Agrosystems, Geosciences & Environment 6:e20405. https://doi.org/10.1002/agg2.20405.
  • Margon, A., and F. Fornasier. 2008. “Determining Soil Enzyme Location and Related Kinetics Using Rapid Fumigation and High-Yield Extraction.” Soil Biology and Biochemistry 40 (9): 2178–2181. https://doi.org/10.1016/j.soilbio.2008.02.006.
  • Marui, J., S. Tada, M. Fukuoka, S. Suzuki, R. Hattori, Y. Wagu, Y. Shiraishi, N. Kitamoto, T. Sugimoto, and K. Kusumoto. 2012. “Comparison of Acid Phosphatase Gene Expression Profiles in Solid-State Rice and Soybean Cultures of an Aspergillus Oryzae Strain with Low Acid Phosphatase Activity (KBN8048): Implications for Miso Brewing.” Food Science and Technology Research 18 (1): 83–90. https://doi.org/10.3136/fstr.18.83.
  • McBride, S. G., and M. S. Strickland. 2019. “Quorum Sensing Modulates Microbial Efficiency by Regulating Bacterial Investment in Nutrient Acquisition Enzymes.” Soil Biology and Biochemistry 136:107514. https://doi.org/10.1016/j.soilbio.2019.06.010.
  • McCarty, G. W., D. R. Shogren, and J. M. Bremner. 1992. “Regulation of Urease Production in Soil by Microbial Assimilation of Nitrogen.” Biology and Fertility of Soils 12 (4): 261–264. https://doi.org/10.1007/BF00336041.
  • McConnell, C. A., J. P. Kaye, and A. R. Kemanian. 2020. “Reviews and Syntheses: Ironing Out Wrinkles in the Soil Phosphorus Cycling Paradigm.” Biogeosciences 17 (21): 5309–5333. https://doi.org/10.5194/bg-17-5309-2020.
  • McGill, W. B., and C. V. Cole. 1981. “Comparative Aspects of Cycling of Organic C, N, S and P Through Soil Organic Matter.” Geoderma 26 (4): 267–286. https://doi.org/10.1016/0016-7061(81)90024-0.
  • McMahon, S., and J. P. Schimel. 2017. “Shifting Patterns of Microbial N-Metabolism Across Seasons in Upland Alaskan Tundra Soils.” Soil Biology and Biochemistry 105:96–107. https://doi.org/10.1016/j.soilbio.2016.11.012.
  • Melle, C., M. Wallenstein, A. Darrouzet-Nardi, and M. N. Weintraub. 2015. “Microbial Activity Is Not Always Limited by Nitrogen in Arctic Tundra Soils.” Soil Biology and Biochemistry 90:52–61. https://doi.org/10.1016/j.soilbio.2015.07.023.
  • Metcalfe, A. C., M. Krsek, G. W. Gooday, J. I. Prosser, and E. M. H. Wellington. 2002. “Molecular Analysis of a Bacterial Chitinolytic Community in an Upland Pasture.” Applied and Environmental Microbiology 68 (10): 5042–5050. https://doi.org/10.1128/AEM.68.10.5042-5050.2002.
  • Mise, K., K. Fujita, T. Kunito, K. Senoo, and S. Otsuka. 2018. “Phosphorus-Mineralizing Communities Reflect Nutrient-Rich Characteristics in Japanese Arable Andisols.” Microbes and Environments 33 (3): 282–289. https://doi.org/10.1264/jsme2.ME18043.
  • Mise, K., R. Maruyama, Y. Miyabara, T. Kunito, K. Senoo, and S. Otsuka. 2020. “Time-Series Analysis of Phosphorus-Depleted Microbial Communities in Carbon/nitrogen-Amended Soils.” Applied Soil Ecology 145:103346. https://doi.org/10.1016/j.apsoil.2019.08.008.
  • Mobley, H. L. T., and R. P. Hausinger. 1989. “Microbial Ureases: Significance, Regulation, and Molecular Characterization.” Microbiological Reviews 53 (1): 85–108. https://doi.org/10.1128/mr.53.1.85-108.1989.
  • Mobley, H. L. T., M. D. Island, and R. P. Hausinger. 1995. “Molecular Biology of Microbial Ureases.” Microbiological Reviews 59 (3): 451–480. https://doi.org/10.1128/mr.59.3.451-480.1995.
  • Monds, R. D., P. D. Newell, J. A. Schwartzman, and G. A. O’Toole. 2006. “Conservation of the Pho Regulon in Pseudomonas fluorescens Pf0-1.” Applied and Environmental Microbiology 72 (3): 1910–1924. https://doi.org/10.1128/AEM.72.3.1910-1924.2006.
  • Moorhead, D., Y. Cui, R. Sinsabaugh, and J. Schimel. 2023. “Interpreting Patterns of Ecoenzymatic Stoichiometry.” Soil Biology and Biochemistry 180:108997. https://doi.org/10.1016/j.soilbio.2023.108997.
  • Moorhead, D. L., Z. L. Rinkes, R. L. Sinsabaugh, and M. N. Weintraub. 2013. “Dynamic Relationships Between Microbial Biomass, Respiration, Inorganic Nutrients and Enzyme Activities: Informing Enzyme-Based Decomposition Models.” Frontiers in Microbiology 4:223. https://doi.org/10.3389/fmicb.2013.00223.
  • Moorhead, D. L., R. L. Sinsabaugh, B. H. Hill, and M. N. Weintraub. 2016. “Vector Analysis of Ecoenzyme Activities Reveal Constraints on Coupled C, N and P Dynamics.” Soil Biology and Biochemistry 93:1–7. https://doi.org/10.1016/j.soilbio.2015.10.019.
  • Mori, T. 2020. “Does Ecoenzymatic Stoichiometry Really Determine Microbial Nutrient Limitations?” Soil Biology and Biochemistry 146:107816. https://doi.org/10.1016/j.soilbio.2020.107816.
  • Mori, T. 2022. “Possibly Underestimated Microbial Carbon Limitation Determined by Enzymatic Stoichiometry Approach: Comments on ’Crop Rotation Stage Has a Greater Effect Than Fertilisation on Soil Microbiome Assembly and Enzymatic stoichiometry’.” Science of the Total Environment 846:157931. https://doi.org/10.1016/j.scitotenv.2022.157931.
  • Mori, T. 2024. “Empirical Evidence Challenges the Effectiveness of the Enzymatic Stoichiometry of Glucosidase and Phosphatase as an Indicator of Microbial C Vs P Limitation.” Science of the Total Environment 915:170079. https://doi.org/10.1016/j.scitotenv.2024.170079.
  • Mori, T., R. Aoyagi, K. Kitayama, and J. Mo. 2021. “Does the Ratio of β-1,4-Glucosidase to β-1,4-N-Acetylglucosaminidase Indicate the Relative Resource Allocation of Soil Microbes to C and N Acquisition?” Soil Biology and Biochemistry 160:108363. https://doi.org/10.1016/j.soilbio.2021.108363.
  • Mori, T., N. Imai, D. Yokoyama, and K. Kitayama. 2018. “Effects of Nitrogen and Phosphorus Fertilization on the Ratio of Activities of Carbon-Acquiring to Nitrogen-Acquiring Enzymes in a Primary Lowland Tropical Rainforest in Borneo, Malaysia.” Soil Science and Plant Nutrition 64 (5): 554–557. https://doi.org/10.1080/00380768.2018.1498286.
  • Mori, T., C. Rosinger, and A. J. Margenot. 2023. “Enzymatic C: N: P Stoichiometry: Questionable Assumptions and Inconsistencies to Infer Soil Microbial Nutrient Limitation.” Geoderma 429:116242. https://doi.org/10.1016/j.geoderma.2022.116242.
  • Morita, R. Y. 1988. “Bioavailability of Energy and Its Relationship to Growth and Starvation Survival in Nature.” Canadian Journal of Microbiology 34 (4): 436–441. https://doi.org/10.1139/m88-076.
  • Mori, T., C. Wang, S. Wang, W. Zhang, and J. Mo. 2024. “Contradiction with Enzymatic Stoichiometry Theory: Persistent Low Ratios of β-Glucosidase to Phosphomonoesterase Following 10-Year Continuous Phosphorus Fertilization in Three Subtropical Forests.” Pedobiologia 103:150931. https://doi.org/10.1016/j.pedobi.2024.150931.
  • Moro, H. 2015. “Evaluation of Soil Nutrient Availability Using Soil Enzymes.” Doctoral Thesis. Interdisciplinary Graduate School of Science and Technology, Shinshu University, Matsumoto, Japan.
  • Moro, H., T. Kunito, and T. Sato. 2015. “Assessment of Phosphorus Bioavailability in Cultivated Andisols from a Long-Term Fertilization Field Experiment Using Chemical Extractions and Soil Enzyme Activities.” Archives of Agronomy and Soil Science 61 (8): 1107–1123. https://doi.org/10.1080/03650340.2014.984697.
  • Morris, S. J., and C. B. Blackwood. 2015. “The Ecology of the Soil Biota and Their Function.” In Soil Microbiology, Ecology, and Biochemistry, edited by E. A. Paul, 273–309. 4th ed. Amsterdam: Elsevier.
  • Myrold, D. D., and P. J. Bottomley. 2008. “Nitrogen mineralization and immobilization.” In Nitrogen in Agricultural Systems, edited by J. S. Schepers and W. R. Raun, 157–172. Madison: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
  • Nakas, J. P., W. D. Gould, and D. A. Klein. 1987. “Origin and Expression of Phosphatase Activity in a Semi-Arid Grassland Soil.” Soil Biology and Biochemistry 19 (1): 13–18. https://doi.org/10.1016/0038-0717(87)90118-0.
  • Nannipieri, P., L. Giagnoni, L. Landi, and G. Renella. 2011. “Role of Phosphatase Enzymes in Soil.” In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling (Soil Biology 26), edited by E. K. Bünemann, A. Oberson, and E. Frossard, 215–243. Berlin: Springer-Verlag.
  • Nannipieri, P., L. Giagnoni, G. Renella, E. Puglisi, B. Ceccanti, G. Masciandaro, F. Fornasier, M. C. Moscatelli, and S. Marinari. 2012. “Soil Enzymology: Classical and Molecular Approaches.” Biology and Fertility of Soils 48 (7): 743–762. https://doi.org/10.1007/s00374-012-0723-0.
  • Nannipieri, P., C. Trasar-Cepeda, and R. P. Dick. 2018. “Soil Enzyme Activity: A Brief History and Biochemistry as a Basis for Appropriate Interpretations and Meta-Analysis.” Biology and Fertility of Soils 54 (1): 11–19. https://doi.org/10.1007/s00374-017-1245-6.
  • Neal, A. L., M. Blackwell, E. Akkari, C. Guyomar, I. Clark, and P. R. Hirsch. 2018. “Phylogenetic Distribution, Biogeography and the Effects of Land Management Upon Bacterial Non-Specific Acid-Phosphatase Gene Diversity and Abundance.” Plant and Soil 427 (1–2): 175–189. https://doi.org/10.1007/s11104-017-3301-2.
  • Neal, A. L., M. Rossmann, C. Brearley, E. Akkari, C. Guyomar, I. M. Clark, E. Allen, and P. R. Hirsch. 2017. “Land-Use Influences Phosphatase Gene Microdiversity in Soils.” Environmental Microbiology 19 (7): 2740–2753. https://doi.org/10.1111/1462-2920.13778.
  • Nielsen, T. H., T. A. Bonde, and J. Sørensen. 1998. “Significance of Microbial Urea Turnover in N Cycling of Three Danish Agricultural Soils.” FEMS Microbiology Ecology 25 (2): 147–157. https://doi.org/10.1111/j.1574-6941.1998.tb00468.x.
  • Noll, L., S. Zhang, Q. Zheng, Y. Hu, and W. Wanek. 2019. “Wide-Spread Limitation of Soil Organic Nitrogen Transformations by Substrate Availability and Not by Extracellular Enzyme Content.” Soil Biology and Biochemistry 133:37–49. https://doi.org/10.1016/j.soilbio.2019.02.016.
  • Norman, J. S., D. N. Smercina, J. T. Hileman, L. K. Tiemann, and M. L. Friesen. 2020. “Soil Aminopeptidase Induction Is Unaffected by Inorganic Nitrogen Availability.” Soil Biology and Biochemistry 149:107952. https://doi.org/10.1016/j.soilbio.2020.107952.
  • North, M. J. 1982. “Comparative Biochemistry of the Proteinases of Eukaryotic Microorganisms.” Microbiological Reviews 46 (3): 308–340. https://doi.org/10.1128/mr.46.3.308-340.1982.
  • Olander, L. P., and P. M. Vitousek. 2000. “Regulation of Soil Phosphatase and Chitinase Activity by N and P Availability.” Biogeochemistry 49 (2): 175–190. https://doi.org/10.1023/A:1006316117817.
  • Otani, T., and N. Ae. 1996. “Phosphorus (P) Uptake Mechanisms of Crops Grown in Soils with Low P Status. I. Screening of Crops for Efficient P Uptake.” Soil Science and Plant Nutrition 42 (1): 155–163. https://doi.org/10.1080/00380768.1996.10414699.
  • Otsuka, S., and T. Kunito. 2021. “Pathways and Dynamics of Phosphorus Supply to Plants Through Organic Substances. 5. Exploring Conditions That Promote Phosphate Supply.” Japanese Journal of Soil Science and Plant Nutrition 92 (6): 481–490. https://doi.org/10.20710/dojo.92.6_481. (in Japanese).
  • Pai, A., Y. Tanouchi, and L. You. 2012. “Optimality and Robustness in Quorum Sensing (QS)-Mediated Regulation of a Costly Public Good Enzyme.” Proceedings of the National Academy of Sciences of the United States of America 109 (48): 19810–19815. https://doi.org/10.1073/pnas.1211072109.
  • Park, Y., M. Solhtalab, W. Thongsomboon, and L. Aristilde. 2022. “Strategies of Organic Phosphorus Recycling by Soil Bacteria: Acquisition, Metabolism, and Regulation.” Environmental Microbiology Reports 14 (1): 3–24. https://doi.org/10.1111/1758-2229.13040.
  • Pócsi, I., T. Pusztahelyi, M. S. Bogáti, and A. Szentirmai. 1993. “The Formation of N-Acetyl-β-D-Hexosaminidase Is Repressed by Glucose in Penicillium Chrysogenum.” Journal of Basic Microbiology 33 (4): 259–267. https://doi.org/10.1002/jobm.3620330409.
  • Qi, W., S. A. Baldwin, S. P. Muench, and A. Baker. 2016. “Pi Sensing and Signalling: From Prokaryotic to Eukaryotic Cells.” Biochemical Society Transactions 44 (3): 766–773. https://doi.org/10.1042/BST20160026.
  • Qin, S., C. Hu, Y. Wang, X. Li, and X. He. 2010. “Tillage Effects on Intracellular and Extracellular Soil Urease Activities Determined by an Improved Chloroform Fumigation Method.” Soil Science 175 (11): 568–572. https://doi.org/10.1097/SS.0b013e3181fa2810.
  • Qiu, X., D. Peng, H. Tian, H. Wang, X. Liu, L. Cao, Z. Li, and S. Cheng. 2021. “Soil Ecoenzymatic Stoichiometry and Microbial Resource Limitation Driven by Thinning Practices and Season Types in Larix Principis-Rupprechtii Plantations in North China.” Forest Ecology & Management 482:118880. https://doi.org/10.1016/j.foreco.2020.118880.
  • Qualls, R. G., and B. L. Haines. 1992. “Biodegradability of Dissolved Organic Matter in Forest Throughfall, Soil Solution, and Stream Water.” Soil Science Society of America Journal 56 (2): 578–586. https://doi.org/10.2136/sssaj1992.03615995005600020038x.
  • Quiquampoix, H., and R. G. Burns. 2007. “Interactions Between Proteins and Soil Mineral Surfaces: Environmental and Health Consequences.” Elements 3 (6): 401–406. https://doi.org/10.2113/GSELEMENTS.3.6.401.
  • Ragot, S. A., M. A. Kertesz, É. Mészáros, E. Frossard, E. K. Bünemann, and T. Lueders. 2017. “Soil phoD and phoX Alkaline Phosphatase Gene Diversity Responds to Multiple Environmental Factors.” FEMS Microbiology Ecology 93 (1): fiw212. https://doi.org/10.1093/femsec/fiw212.
  • Rastetter, E. B., and G. R. Shaver. 1992. “A model of multiple-element limitation for acclimating vegetation.” Ecology 73 (4): 1157–1174. https://doi.org/10.2307/1940666.
  • Renella, G., L. Landi, and P. Nannipieri. 2002. “Hydrolase Activities During and After the Chloroform Fumigation of Soil as Affected by Protease Activity.” Soil Biology and Biochemistry 34 (1): 51–60. https://doi.org/10.1016/S0038-0717(01)00152-3.
  • Renella, G., U. Szukics, L. Landi, and P. Nannipieri. 2007. “Quantitative Assessment of Hydrolase Production and Persistence in Soil.” Biology and Fertility of Soils 44 (2): 321–329. https://doi.org/10.1007/s00374-007-0208-8.
  • Renz, T. E., H. Neufeldt, M. A. Ayarza, J. E. da Silva, and W. Zech. 1999. “Acid Monophosphatase: An Indicator of Phosphorus Mineralization or of Microbial Activity? A Case Study from the Brazilian Cerrados.” In Sustainable Land Management for the Oxisols of the Latin American Savannas: Dynamics of Soil Organic Matter and Indicators of Soil Quality, edited by R. Thomas and M. A. Ayarza, 173–186. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT).
  • Ros, G. H., M. C. Hanegraaf, E. Hoffland, and W. H. van Riemsdijk. 2011a. “Predicting Soil N Mineralization: Relevance of Organic Matter Fractions and Soil Properties.” Soil Biology & Biochemistry 43 (8): 1714–1722. https://doi.org/10.1016/j.soilbio.2011.04.017.
  • Rosinger, C., J. Rousk, and H. Sandén. 2019. “Can Enzymatic Stoichiometry Be Used to Determine Growth-Limiting Nutrients for Microorganisms?—A Critical Assessment in Two Subtropical Soils.” Soil Biology and Biochemistry 128:115–126. https://doi.org/10.1016/j.soilbio.2018.10.011.
  • Rossolini, G. M., S. Schippa, M. L. Riccio, F. Berlutti, L. E. Macaskie, and M. C. Thaller. 1998. “Bacterial Nonspecific Acid Phosphohydrolases: Physiology, Evolution and Use As Tools in Microbial Biotechnology.” Cellular and Molecular Life Sciences (CMLS) 54 (8): 833–850. https://doi.org/10.1007/s000180050212.
  • Ros, G. H., E. J. M. Temminghoff, and E. Hoffland. 2011b. “Nitrogen Mineralization: A Review and Meta-Analysis of the Predictive Value of Soil Tests.” European Journal of Soil Science 62 (1): 162–173. https://doi.org/10.1111/j.1365-2389.2010.01318.x.
  • Rytioja, J., K. Hildén, J. Yuzon, A. Hatakka, R. P. de Vries, and M. R. Mäkelä. 2014. “Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes.” Microbiology and Molecular Biology Reviews 78 (4): 614–649. https://doi.org/10.1128/MMBR.00035-14.
  • Santana, M. M., T. Dias, J. M. Gonzalez, and C. Cruz. 2021. “Transformation of Organic and Inorganic Sulfur—Adding Perspectives to New Players in Soil and Rhizosphere.” Soil Biology and Biochemistry 160:108306. https://doi.org/10.1016/j.soilbio.2021.108306.
  • Santos-Beneit, F. 2015. “The Pho Regulon: A Huge Regulatory Network in Bacteria.” Frontiers in Microbiology 6:402. https://doi.org/10.3389/fmicb.2015.00402.
  • Sanyal, S. K., and S. K. De Datta. 1991. “Chemistry of Phosphorus Transformations in Soil.” Advances in Soil Science 16:1–120. https://doi.org/10.1007/978-1-4612-3144-8_1.
  • Sattari, S. Z., A. F. Bouwman, K. E. Giller, and M. K. van Ittersum. 2012. “Residual Soil Phosphorus As the Missing Piece in the Global Phosphorus Crisis Puzzle.” Proceedings of the National Academy of Sciences of the United States of America 109 (16): 6348–6353. https://doi.org/10.1073/pnas.1113675109.
  • Scherer, H. W. 2009. “Sulfur in Soils.” Journal of Plant Nutrition and Soil Science 172 (3): 326–335. https://doi.org/10.1002/jpln.200900037.
  • Schimel, J., C. A. Becerra, and J. Blankinship. 2017. “Estimating Decay Dynamics for Enzyme Activities in Soils from Different Ecosystems.” Soil Biology and Biochemistry 114:5–11. https://doi.org/10.1016/j.soilbio.2017.06.023.
  • Schimel, J., M. N. Weintraub, and D. Moorhead. 2022. “Estimating Microbial Carbon Use Efficiency in Soil: Isotope-Based and Enzyme-Based Methods Measure Fundamentally Different Aspects of Microbial Resource Use.” Soil Biology and Biochemistry 169:108677. https://doi.org/10.1016/j.soilbio.2022.108677.
  • Schleuss, P.-M., M. Widdig, A. Heintz-Buschart, A. Guhr, S. Martin, K. Kirkman, and M. Spohn. 2019. “Stoichiometric Controls of Soil Carbon and Nitrogen Cycling After Long-Term Nitrogen and Phosphorus Addition in a Mesic Grassland in South Africa.” Soil Biology & Biochemistry 135:294–303. https://doi.org/10.1016/j.soilbio.2019.05.018.
  • Sharpley, A. N., J. T. Sims, and G. M. Pierzynski. 1994. “Innovative Soil Phosphorus Availability Indices: Assessing Inorganic Phosphorus.” In Soil Testing: Prospects for Improving Nutrient Recommendations, edited by J. L. Havlin and J. S. Jacobsen, 115–142. Madison, Wisconsin: Soil Science Society of America.
  • Shuai, X. 2018. “Surface Reactions of Phosphorus Extracted by the Modified Truog Method to Predict Soil Intrinsic Pools.” Soil Science Society of America Journal 82 (5): 1140–1146. https://doi.org/10.2136/sssaj2018.04.0163.
  • Sinsabaugh, R. L. 2005. “Fungal Enzymes at the Community Scale.” In The Fungal Community: Its Organization and Role in the Ecosystem, edited by J. Dighton, J. F. White, and P. Oudemans, 349–360. Boca Raton: Taylor & Francis.
  • Sinsabaugh, R. L., R. K. Antibus, A. E. Linkins, C. A. McClaugherty, L. Rayburn, D. Repert, and T. Weiland. 1993. “Wood Decomposition: Nitrogen and Phosphorus Dynamics in Relation to Extracellular Enzyme Activity.” Ecology 74 (5): 1586–1593. https://doi.org/10.2307/1940086.
  • Sinsabaugh, R. L., and J. J. Follstad Shah. 2012. “Ecoenzymatic Stoichiometry and Ecological Theory.” Annual Review of Ecology, Evolution, and Systematics 43 (1): 313–343. https://doi.org/10.1146/annurev-ecolsys-071112-124414.
  • Sinsabaugh, R. L., J. J. Follstad Shaw, B. H. Hill, and C. M. Elonen. 2012. “Ecoenzymatic Stoichiometry of Stream Sediments with Comparison to Terrestrial Soils.” Biogeochemistry 111 (1–3): 455–467. https://doi.org/10.1007/s10533-011-9676-x.
  • Sinsabaugh, R. L., B. H. Hill, and J. J. Follstad Shah. 2009. “Ecoenzymatic Stoichiometry of Microbial Organic Nutrient Acquisition in Soil and Sediment.” Nature 462 (7274): 795–798. https://doi.org/10.1038/nature08632.
  • Sinsabaugh, R. L., C. L. Lauber, M. N. Weintraub, B. Ahmed, S. D. Allison, C. Crenshaw, A. R. Contosta, et al. 2008. “Stoichiometry of Soil Enzyme Activity at Global Scale.” Ecology Letters 11 (11): 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x.
  • Sinsabaugh, R. L., and D. L. Moorhead. 1994. “Resource Allocation to Extracellular Enzyme Production: A Model for Nitrogen and Phosphorus Control of Litter Decomposition.” Soil Biology and Biochemistry 26 (10): 1305–1311. https://doi.org/10.1016/0038-0717(94)90211-9.
  • Sistla, S. A., and J. P. Schimel. 2012. “Stoichiometric Flexibility as a Regulator of Carbon and Nutrient Cycling in Terrestrial Ecosystems Under Change.” New Phytologist 196 (1): 68–78. https://doi.org/10.1111/j.1469-8137.2012.04234.x.
  • Slezack-Deschaumes, S., S. Piutti, P.-C. Vong, and E. Benizri. 2012. “Dynamics of Culturable Arylsulfatase-Producing Bacterial and Fungal Communities Along the Phenology of Field-Grown Rape.” European Journal of Soil Biology 48:66–72. https://doi.org/10.1016/j.ejsobi.2011.07.014.
  • Smith, J. L., and E. A. Paul. 1990. “The Significance of Soil Microbial Biomass Estimations.” In Soil Biochemistry, edited by J.-M. Bollag and G. Stotzky, 357–396. Vol. 6. New York: Marcel Dekker.
  • Soong, J. L., L. Fuchslueger, S. Marañon-Jimenez, M. S. Torn, I. A. Janssens, J. Penuelas, and A. Richter. 2020. “Microbial Carbon Limitation: The Need for Integrating Microorganisms into Our Understanding of Ecosystem Carbon Cycling.” Global Change Biology 26 (4): 1953–1961. https://doi.org/10.1111/gcb.14962.
  • Sørensen, A., M. Lübeck, P. S. Lübeck, and B. K. Ahring. 2013. “Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials.” Biomolecules 3 (4): 612–631. https://doi.org/10.3390/biom3030612.
  • Spohn, M., and Y. Kuzyakov. 2013. “Distribution of Microbial- and Root-Derived Phosphatase Activities in the Rhizosphere Depending on P Availability and C Allocation—Coupling Soil Zymography with 14C Imaging.” Soil Biology and Biochemistry 67:106–113. https://doi.org/10.1016/j.soilbio.2013.08.015.
  • Sterner, R. W., and J. J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press.
  • Stone, M. M., A. F. Plante, and B. B. Casper. 2013. “Plant and Nutrient Controls on Microbial Functional Characteristics in a Tropical Oxisol.” Plant and Soil 373 (1–2): 893–905. https://doi.org/10.1007/s11104-013-1840-8.
  • Stressler, T., I. Seitl, A. Kuhn, and L. Fischer. 2016. “Detection, Production, and Application of Microbial Arylsulfatases.” Applied Microbiology and Biotechnology 100 (21): 9053–9067. https://doi.org/10.1007/s00253-016-7838-4.
  • Sullivan, B. W., S. Alvarez-Clare, S. C. Castle, S. Porder, S. C. Reed, L. Schreeg, A. R. Townsend, and C. C. Cleveland. 2014. “Assessing Nutrient Limitation in Complex Forested Ecosystems: Alternatives to Large-Scale Fertilization Experiments.” Ecology 95 (3): 668–681. https://doi.org/10.1890/13-0825.1.
  • Susuki, A., K. Lawton, and E. C. Doll. 1963. “Phosphorus Uptake and Soil Tests As Related to Forms of Phosphorus in Some Michigan Soils.” Soil Science Society of America, Proceedings 27 (4): 401–403. https://doi.org/10.2136/sssaj1963.03615995002700040016x.
  • Suzuki, C., T. Kunito, T. Aono, C.-T. Liu, and H. Oyaizu. 2005. “Microbial Indices of Soil Fertility.” Journal of Applied Microbiology 98 (5): 1062–1074. https://doi.org/10.1111/j.1365-2672.2004.02529.x.
  • Tabatabai, M. A. 1994. “Soil Enzymes.” In Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties, edited by R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, M. A. Tabatabai, and A. Wollum, 775–833. Madison: Soil Science Society of America.
  • Tan, H., M. Barret, M. J. Mooij, O. Rice, J. P. Morrissey, A. Dobson, B. Griffiths, and F. O’Gara. 2013. “Long-Term Phosphorus Fertilisation Increased the Diversity of the Total Bacterial Community and the phoD Phosphorus Mineraliser Group in Pasture Soils.” Biology and Fertility of Soils 49 (6): 661–672. https://doi.org/10.1007/s00374-012-0755-5.
  • Tate, R. L., III. 2000. Soil Microbiology. 2nd ed. New York: John Wiley & Sons.
  • Tateno, M. 1988. “Limitations of Available Substrates for the Expression of Cellulase and Protease Activities in Soil.” Soil Biology and Biochemistry 20 (1): 117–118. https://doi.org/10.1016/0038-0717(88)90136-8.
  • Trasar-Cepeda, M. C., and F. Gil-Sotres. 1988. “Kinetics of Acid Phosphatase Activity in Various Soils of Galicia (NW Spain).” Soil Biology and Biochemistry 20 (3): 275–280. https://doi.org/10.1016/0038-0717(88)90003-X.
  • Trasar-Cepeda, C., M. C. Leirós, and F. Gil-Sotres. 2008. “Hydrolytic Enzyme Activities in Agricultural and Forest Soils: Some Implications for Their Use As Indicators of Soil Quality.” Soil Biology and Biochemistry 40 (9): 2146–2155. https://doi.org/10.1016/j.soilbio.2008.03.015.
  • Traving, S. J., U. H. Thygesen, L. Riemann, C. A. Stedmon, and A. M. Spormann. 2015. “A Model of Extracellular Enzymes in Free-Living Microbes: Which Strategy Pays Off?” Applied and Environmental Microbiology 81 (21): 7385–7393. https://doi.org/10.1128/AEM.02070-15.
  • Treseder, K. K., and J. T. Lennon. 2015. “Fungal Traits That Drive Ecosystem Dynamics on Land.” Microbiology and Molecular Biology Reviews 79 (2): 243–262. https://doi.org/10.1128/MMBR.00001-15.
  • Trivedi, P., M. Delgado-Baquerizo, C. Trivedi, H. Hu, I. C. Anderson, T. C. Jeffries, J. Zhou, and B. K. Singh. 2016. “Microbial Regulation of the Soil Carbon Cycle: Evidence from Gene–Enzyme Relationships.” The ISME Journal 10 (11): 2593–2604. https://doi.org/10.1038/ismej.2016.65.
  • Turner, B. L. 2010. “Variation in pH Optima of Hydrolytic Enzyme Activities in Tropical Rain Forest Soils.” Applied and Environmental Microbiology 76 (19): 6485–6493. https://doi.org/10.1128/AEM.00560-10.
  • Turner, B. L., and S. J. Wright. 2014. “The Response of Microbial Biomass and Hydrolytic Enzymes to a Decade of Nitrogen, Phosphorus, and Potassium Addition in a Lowland Tropical Rain Forest.” Biogeochemistry 117 (1): 115–130. https://doi.org/10.1007/s10533-013-9848-y.
  • Urvoy, M., C. Labry, S. L’Helguen, and R. Lami. 2022. “Quorum Sensing Regulates Bacterial Processes That Play a Major Role in Marine Biogeochemical Cycles.” Frontiers in Marine Science 9:834337. https://doi.org/10.3389/fmars.2022.834337.
  • Uwasawa, M., P. Sangtong, and W. Cholitkul. 1988. “Behavior of Phosphorus in Paddy Soils of Thailand. II. Fate of Phosphorus During Cultivation in Some Representative Soils.” Soil Science and Plant Nutrition 34 (2): 183–194. https://doi.org/10.1080/00380768.1988.10415672.
  • Van Mooy, B. A. S., L. R. Hmelo, L. E. Sofen, S. R. Campagna, A. L. May, S. T. Dyhrman, A. Heithoff, E. A. Webb, L. Momper, and T. J. Mincer. 2012. “Quorum Sensing Control of Phosphorus Acquisition in Trichodesmium Consortia.” The ISME Journal 6 (2): 422–429. https://doi.org/10.1038/ismej.2011.115.
  • Vershinina, O. A., and L. V. Znamenskaya. 2002. “The Pho Regulons of Bacteria.” Microbiology (Reading, England) 71 (5): 497–511. https://doi.org/10.1023/A:1020547616096.
  • Vimpany, I. A., P. J. Nicholls, P. J. Milham, and J. Bradley. 1997. “Reactive Fe Controls the Relative Amount of PO4 Extracted from Acidic Soils by NaHCO3 and by Acidic Fluoride. I. Soils without Recent P Additions.” Australian Journal of Soil Research 35 (2): 355–364. https://doi.org/10.1071/S96058.
  • Vranova, V., K. Rejsek, and P. Formanek. 2013. “Proteolytic Activity in Soil: A Review.” Applied Soil Ecology 70:23–32. https://doi.org/10.1016/j.apsoil.2013.04.003.
  • Wallenstein, M. D., and R. G. Burns. 2011. “Ecology of Extracellular Enzyme Activities and Organic Matter Degradation in Soil: A Complex Community-Driven Process.” In Methods of Soil Enzymology, edited by R. P. Dick, 35–55. Madison: Soil Science Society of America.
  • Wallenstein, M. D., and M. N. Weintraub. 2008. “Emerging Tools for Measuring and Modeling the In Situ Activity of Soil Extracellular Enzymes.” Soil Biology and Biochemistry 40 (9): 2098–2106. https://doi.org/10.1016/j.soilbio.2008.01.024.
  • Wang, J., G. Chen, S. Ji, Y. Zhong, Q. Zhao, Q. He, Y. Wu, and H. Bing. 2023b. “Close Relationship Between the Gene Abundance and Activity of Soil Extracellular Enzyme: Evidence from a Vegetation Restoration Chronosequence.” Soil Biology & Biochemistry 177:108929. https://doi.org/10.1016/j.soilbio.2022.108929.
  • Wang, C., and Y. Kuzyakov. 2023. “Energy Use Efficiency of Soil Microorganisms: Driven by Carbon Recycling and Reduction.” Global Change Biology 29 (22): 6170–6187. https://doi.org/10.1111/gcb.16925.
  • Wang, L., X. Luo, H. Liao, W. Chen, D. Wei, P. Cai, and Q. Huang. 2018. “Ureolytic Microbial Community Is Modulated by Fertilization Regimes and Particle-Size Fractions in a Black Soil of Northeastern China.” Soil Biology and Biochemistry 116:171–178. https://doi.org/10.1016/j.soilbio.2017.10.012.
  • Wang, C., Q. Mao, T. Mori, J. Huang, H. Mo, J. Mo, and X. Lu. 2023a. “Resource Allocation Theory Reveals Sulfur Shortage of Microbes Under Phosphorus Amendment in Tropical Forests with Divergent Land Use History.” Soil Biology & Biochemistry 184:109126. https://doi.org/10.1016/j.soilbio.2023.109126.
  • Wang, J., Y. Wu, J. Li, Q. He, and H. Bing. 2021b. “Soil Enzyme Stoichiometry Is Tightly Linked to Microbial Community Composition in Successional Ecosystems After Glacier Retreat.” Soil Biology and Biochemistry 162:108429. https://doi.org/10.1016/j.soilbio.2021.108429.
  • Wang, C., L. Xue, and R. Jiao. 2021a. “Soil Phosphorus Fractions, Phosphatase Activity, and the Abundance of phoC and phoD Genes Vary with Planting Density in Subtropical Chinese Fir Plantations.” Soil and Tillage Research 209:104946. https://doi.org/10.1016/j.still.2021.104946.
  • Waring, B. G., S. R. Weintraub, and R. L. Sinsabaugh. 2014. “Ecoenzymatic Stoichiometry of Microbial Nutrient Acquisition in Tropical Soils.” Biogeochemistry 117 (1): 101–113. https://doi.org/10.1007/s10533-013-9849-x.
  • Wei, X., Y. Hu, B. S. Razavi, J. Zhou, J. Shen, P. Nannipieri, J. Wu, and T. Ge. 2019. “Rare Taxa of Alkaline Phosphomonoesterase-Harboring Microorganisms Mediate Soil Phosphorus Mineralization.” Soil Biology & Biochemistry 131:62–70. https://doi.org/10.1016/j.soilbio.2018.12.025.
  • Weil, R. R., and N. C. Brady. 2017. The Nature and Properties of Soils. 15th ed. Harlow, England: Pearson Education Limited.
  • Weintraub, M. N. 2023. “Constraints on Enzyme Production at Low O2 and Limitations of Stoichiometric Vector Analyses: A Commentary on Chen.” Soil Ecology Letters 5 (2022): 230183. https://doi.org/10.1007/s42832-023-0183-5.
  • Whooley, M. A., J. A. O’Callaghan, and A. J. McLoughlin. 1983. “Effect of Substrate on the Regulation of Exoprotease Production by Pseudomonas aeruginosa ATCC 10145.” Journal of General Microbiology 129 (4): 981–988. https://doi.org/10.1099/00221287-129-4-981.
  • Wiame, J.-M., M. Grenson, and H. N. Arst Jr. 1985. “Nitrogen Catabolite Repression in Yeasts and Filamentous Fungi.” Advances in Microbial Physiology 26:1–88. https://doi.org/10.1016/s0065-2911(08)60394-x.
  • Xu, H., M. Wang, C. You, B. Tan, L. Xu, H. Li, L. Zhang, et al. 2024. “Warming Effects on C: N: P Stoichiometry and Nutrient Limitation in Terrestrial Ecosystems.” Soil and Tillage Research 235:105896. https://doi.org/10.1016/j.still.2023.105896.
  • Yamaguchi, N., A. Hikono, A. Suda, Y. Hashimoto, S. Yada, M. Ooshima, T. Yamamoto, K. Ando, and M. Kasuya. 2023. “Speciation and Microscale Distribution of Phosphorus Compounds Accumulated in Continuously Fertilized Greenhouse Soils.” Soil Science Society of America Journal 87 (4): 821–832. https://doi.org/10.1002/saj2.20553.
  • Yang, S., F. Yao, J. Ye, S. Fang, Z. Wang, R. Wang, Q. Zhang, et al. 2019. “Latitudinal Pattern of Soil Lignin/Cellulose Content and the Activity of Their Degrading Enzymes Across a Temperate Forest Ecosystem.” Ecological Indicators 102:557–568. https://doi.org/10.1016/j.ecolind.2019.03.009.
  • Yang, L., L. Zhang, D. Geisseler, Z. Wu, P. Gong, Y. Xue, C. Yu, Y. Juan, and W. R. Horwath. 2016. “Available C and N Affect the Utilization of Glycine by Soil Microorganisms.” Geoderma 283:32–38. https://doi.org/10.1016/j.geoderma.2016.07.022.
  • Yip, H. M., S. Cheng, E. J. Olson, M. Crone, and S. J. Maerkl. 2023. “Perfect Adaptation Achieved by Transport Limitations Governs the Inorganic Phosphate Response in S. Cerevisiae.” Proceedings of the National Academy of Sciences of the United States of America 120 (2): e2212151120. https://doi.org/10.1073/pnas.2212151120.
  • Yuan, Z.-C., R. Zaheer, R. Morton, and T. M. Finan. 2006. “Genome Prediction of PhoB Regulated Promoters in Sinorhizobium meliloti and Twelve Proteobacteria.” Nucleic Acids Research 34 (9): 2686–2697. https://doi.org/10.1093/nar/gkl365.
  • Zechmeister-Boltenstern, S., K. M. Keiblinger, M. Mooshammer, J. Peñuelas, A. Richter, J. Sardans, and W. Wanek. 2015. “The Application of Ecological Stoichiometry to Plant–Microbial–Soil Organic Matter Transformations.” Ecological Monographs 85 (2): 133–155. https://doi.org/10.1890/14-0777.1.
  • Zheng, L., H. Chen, Y. Wang, Q. Mao, M. Zheng, Y. Su, K. Xiao, K. Wang, and D. Li. 2020. “Responses of Soil Microbial Resource Limitation to Multiple Fertilization Strategies.” Soil and Tillage Research 196:104474. https://doi.org/10.1016/j.still.2019.104474.
  • Zhou, Z., C. Wang, and Y. Jin. 2017. “Stoichiometric Responses of Soil Microflora to Nutrient Additions for Two Temperate Forest Soils.” Biology and Fertility of Soils 53 (4): 397–406. https://doi.org/10.1007/s00374-017-1188-y.
  • Zuccarini, P., J. Sardans, L. Asensio, and J. Peñuelas. 2023. “Altered Activities of Extracellular Soil Enzymes by the Interacting Global Environmental Changes.” Global Change Biology 29 (8): 2067–2091. https://doi.org/10.1111/gcb.16604.