Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 52, 2019 - Issue 1
177
Views
2
CrossRef citations to date
0
Altmetric
Articles

Adaptive signal enhancement for overlapped peaks based on weighting factor selection

, , &
Pages 49-59 | Received 25 Jun 2018, Accepted 03 Dec 2018, Published online: 06 Feb 2019

References

  • He, M.; Yan, J.; Cao, D.; Liu, S.; Zhao, C.; Liang, Y.; Li, Y.; Zhang, Z. Identification of Terpenoids from Ephedra Combining with Accurate Mass and in-silico Retention Indices. Talanta 2013, 103, 116–122. DOI: 10.1016/j.talanta.2012.10.018.
  • He, S.; Xie, W.; Zhang, W.; Zhang, L.; Wang, Y.; Liu, X.; Liu, Y.; Du, C. Multivariate Qualitative Analysis of Banned Additives in Food Safety Using Surface Enhanced Raman Scattering Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 137, 1092–1099. DOI: 10.1016/j.saa.2014.08.134.
  • Zhang, Y.; Nie, M.; Shi, S.; You, Q.; Guo, J.; Liu, L. Integration of Magnetic Solid Phase Fishing and off-line Two-dimensional High-performance Liquid Chromatography–diode Array Detector–mass Spectrometry for Screening and Identification of Human Serum Albumin Binders from Radix Astragali. Food Chemistry 2014, 146, 56–64. DOI: 10.1016/j.foodchem.2013.09.030.
  • Han, X.; Huang, Z.; Chen, X.; Li, Q.; Xu, K.; Chen, D. On-line Multi-component Analysis of Gases for Mud Logging Industry Using Data Driven Raman Spectroscopy. Fuel 2017, 207, 146–153. DOI: 10.1016/j.fuel.2017.06.045.
  • Zhu, H.; Wang, G.; Yang, C.; Cao, Y.; Gui, W. Overlapped Peaks Resolution for Linear Sweep Polarography Using Gaussian-like Distribution. Transactions of Nonferrous Metals Society of China 2013, 23, 2181–2186. DOI: 10.1016/S1003-6326(13)62715-6.
  • Wang, G.; Yang, C.; Zhu, H.; Li, Y.; Peng, X.; Gui, W. State-transition-algorithm-based Resolution for Overlapping Linear Sweep Voltammetric Peaks with High Signal Ratio. Chemometrics and Intelligent Laboratory Systems 2016, 151, 61–70. DOI: 10.1016/j.chemolab.2015.12.008.
  • Parmar, A.; Sharma, S. Derivative UV-vis Absorption Spectra as an Invigorated Spectrophotometric Method for Spectral Resolution and Quantitative Analysis: Theoretical Aspects and Analytical Applications: A Review. TrAC Trends in Analytical Chemistry 2016, 77, 44–53. DOI: 10.1016/j.trac.2015.12.004.
  • Max, J.-J.; Chapados, C. Determination of Spectroscopic Band Shapes by Second Derivatives, Part II: Infrared Spectra of Liquid Light and Heavy Water. Applied Spectroscopy 2015, 69, 1281–1292. DOI: 10.1366/14-07714.
  • Max, J.-J.; Chapados, C. Determination of Spectroscopic Band Shapes Using Second Derivatives, Part I: Theory. Applied Spectroscopy 2015, 69, 348–362.
  • Ruffin, C.; King, R. L.; Younan, N. H. A Combined Derivative Spectroscopy and Savitzky-Golay Filtering Method for the Analysis of Hyperspectral Data. GIScience & Remote Sensing 2008, 45, 1–15. DOI: 10.2747/1548-1603.45.1.1.
  • Jiang, T.; Wu, Y. An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals. IEEE Transactions on Broadcasting 2008, 54, 257–268. 10.1109/TBC.2008.915770.
  • Jiang, T.; Guizani, M.; Chen, H.; Xiang, W.; Wu, Y. Derivation of PAPR Distribution for OFDM Wireless Systems Based on Extreme Value Theory. IEEE Transactions on Wireless Communication 2008, 7, 1298–1305. 10.1109/TWC.2008.060862.
  • Grimminck, D. L. A. G.; Polman, B. J. W.; Kentgens, A. P. M.; Leo Meerts, W. EASY-GOING Deconvolution: Combining Accurate Simulation and Evolutionary Algorithms for Fast Deconvolution of Solid-state Quadrupolar NMR Spectra. Journal of Magnetic Resonance 2011, 211, 114–120. DOI: 10.1016/j.jmr.2011.04.009.
  • Wei, X.; Shi, X.; Kim, S.; Patrick, J. S.; Binkley, J.; Kong, M.; McClain, C.; Zhang, X. Data Dependent Peak Model Based Spectrum Deconvolution for Analysis of High Resolution LC-MS Data. Analytical Chemistry 2014, 86, 2156–2165. DOI: 10.1021/ac403803a.
  • Calabrese, I.; Merli, M.; Turco Liveri, M. L. Deconvolution Procedure of the UV–vis Spectra. A Powerful Tool for the Estimation of the Binding of a Model Drug to Specific Solubilisation Loci of Bio-compatible Aqueous Surfactant-forming Micelle. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 142, 150–158. DOI: 10.1016/j.saa.2014.12.095.
  • Nie, L.; Wu, S.; Wang, J.; Zheng, L.; Lin, X.; Rui, L. Continuous Wavelet Transform and Its Application to Resolving and Quantifying the Overlapped Voltammetric Peaks. Analytica Chimica Acta 2001, 450, 185–192. DOI: 10.1016/S0003-2670(01)01374-5.
  • Li, Y.; Wang, Q.; Sun, N.; Zhou, W.; Liu, C. Continuous Wavelet Transform to Improve Resolution of Overlapped Peaks Based on Curve Fitting. Spectroscopy Letters 2013, 46, 507–515. DOI: 10.1080/00387010.2012.762403.
  • Yu, L.; Liu, T.; Liu, K.; Jiang, J.; Wang, T. A Method for Separation of Overlapping Absorption Lines in Intracavity Gas Detection. Sensors and Actuators B: Chemical 2016, 228, 10–15. DOI: 10.1016/j.snb.2015.12.106.
  • Krutchkoff, R. G. Classical and Inverse Regression Methods of Calibration in Extrapolation. Technometrics 1969, 11, 605–608. DOI: 10.1080/00401706.1969.10490714.
  • Tellinghuisen, J. Inverse vs. classical Calibration for Small Data Sets. Fresenius’ Journal of Analytical Chemistry 2000, 368, 585–588. DOI: 10.1007/s002160000556.
  • Alsmeyer, F.; Koß, H.-J.; Marquardt, W. Indirect Spectral Hard Modeling for the Analysis of Reactive and Interacting Mixtures. Applied Spectroscopy 2004, 58, 975–985. DOI: 10.1366/0003702041655368.
  • Kriesten, E.; Alsmeyer, F.; Bardow, A.; Marquardt, W. Fully Automated Indirect Hard Modeling of Mixture Spectra. Chemometrics and Intelligent Laboratory Systems 2008, 91, 181–193. DOI: 10.1016/j.chemolab.2007.11.004.
  • Kriesten, E.; Mayer, D.; Alsmeyer, F.; Minnich, C. B.; Greiner, L.; Marquardt, W. Identification of Unknown Pure Component Spectra by Indirect Hard Modeling. Chemometrics and Intelligent Laboratory Systems 2008, 93, 108–119. DOI: 10.1016/j.chemolab.2008.05.002.
  • Dubrovkin, J. Evaluation of Undetectable Perturbations of Peak Parameters Estimated by the Least Square Curve Fitting of Analytical Signal Consisting of Overlapping Peaks. Chemometrics and Intelligent Laboratory Systems 2016, 153, 9–21. DOI: 10.1016/j.chemolab.2016.02.004.
  • Beumers, P.; Engel, D.; Brands, T.; Koß, H.-J.; Bardow, A. Robust Analysis of Spectra with Strong Background Signals by First-Derivative Indirect Hard Modeling (FD-IHM). Chemometrics and Intelligent Laboratory Systems 2018, 172, 1–9. DOI: 10.1016/j.chemolab.2017.11.005.
  • Zhang, G.-C.; Lin, H.-L.; Lin, S.-Y. Thermal Analysis and FTIR Spectral Curve-fitting Investigation of Formation Mechanism and Stability of Indomethacin-saccharin Cocrystals via Solid-state Grinding Process. Journal of Pharmaceutical and Biomedical Analysis 2012, 66, 162–169. DOI: 10.1016/j.jpba.2012.03.039.
  • He, S.; Fang, S.; Liu, X.; Zhang, W.; Xie, W.; Zhang, H.; Wei, D.; Fu, W.; Pei, D. Investigation of a Genetic Algorithm Based Cubic Spline Smoothing for Baseline Correction of Raman Spectra. Chemometrics and Intelligent Laboratory Systems 2016, 152, 1–9. DOI: 10.1016/j.chemolab.2016.01.005.
  • He, S.; Liu, X.; Zhang, W.; Xie, W.; Zhang, H.; Fu, W.; Liu, H.; Liu, X.; Xu, Y.; Yang, D.; Gao, Y. Discrimination of the Coptis Chinensis Geographic Origins with Surface Enhanced Raman Scattering Spectroscopy. Chemometrics and Intelligent Laboratory Systems 2015, 146, 472–477. DOI: 10.1016/j.chemolab.2015.07.002.
  • He, S.; Zhang, W.; Liu, L.; Huang, Y.; He, J.; Xie, W.; Wu, P.; Du, C. Baseline Correction for Raman Spectra Using an Improved Asymmetric Least Squares Method. Analytical Methods 2014, 6, 4402–4407. DOI: 10.1039/C4AY00068D.
  • Kauppinen, J. K.; Moffatt, D. J.; Mantsch, H. H.; Cameron, D. G. Smoothing of Spectral Data in the Fourier Domain. Applied Optics 1982, 21, 1866–1872. 10.1364/AO.21.001866. DOI: 10.1364/AO.21.001866.
  • Apicella, B.; Bruno, A.; Wang, X.; Spinelli, N. Fast Fourier Transform and Autocorrelation Function for the Analysis of Complex Mass Spectra. International Journal of Mass Spectrometry 2013, 338, 30–38. DOI: 10.1016/j.ijms.2013.01.003.
  • Pasti, L.; Walczak, B.; Massart, D. L.; Reschiglian, P. Optimization of Signal Denoising in Discrete Wavelet Transform. Chemometrics and Intelligent Laboratory Systems 1999, 48, 21–34. DOI: 10.1016/S0169-7439(99)00002-7.
  • Jakubowska, M. Inverse Continuous Wavelet Transform in Voltammetry. Chemometrics and Intelligent Laboratory Systems 2008, 94, 131–139. DOI: 10.1016/j.chemolab.2008.07.003.
  • Liu, F.; Zhuang, P.; Burrage, K. Numerical Methods and Analysis for a Class of Fractional Advection–dispersion Models. Computers & Mathematics with Applications 2012, 64, 2990–3007. DOI: 10.1016/j.camwa.2012.01.020.
  • Li, Y.; Ding, Y.; Li, T. Nonlinear Diffusion Filtering for Peak-preserving Smoothing of a Spectrum Signal. Chemometrics and Intelligent Laboratory Systems 2016, 156, 157–165. DOI: 10.1016/j.chemolab.2016.06.007.
  • Li, Y.; Jiang, M.; Liu, F. Time Fractional Super-diffusion Model and Its Application in Peak-preserving Smoothing. Chemometrics and Intelligent Laboratory Systems 2018, 175, 13–19. DOI: 10.1016/j.chemolab.2018.02.005.
  • Li, Y.; Liu, F.; Turner, I. W.; Li, T. Time-Fractional Diffusion Equation for Signal Smoothing. Applied Mathematics and Computation 2018, 326, 108–116. DOI: 10.1016/j.amc.2018.01.007.
  • Jakubowska, M.; Kubiak, W. W. Adaptive-Degree Polynomial Filter for Voltammetric Signals. Analytica Chimica Acta 2004, 512, 241–250. DOI: 10.1016/j.aca.2004.03.007.
  • Browne, M.; Mayer, N.; Cutmore, T. R. H. A Multiscale Polynomial Filter for Adaptive Smoothing. Digital Signal Processing 2007, 17, 69–75. DOI: 10.1016/j.dsp.2006.01.006.
  • Li, Y.; Pan, C.; Xue, Y.; Meng, X.; Ding, Y. A Novel Signal Enhancement Method for Overlapped Peaks with Noise Immunity. Spectroscopy Letters 2016, 49, 285–293. DOI: 10.1080/00387010.2016.1144614.
  • Schafer, R. W. What Is a Savitzky-Golay Filter? IEEE Signal Processing Magazine 2011, 28, 111–117. DOI: 10.1109/MSP.2011.941097.
  • Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry 1964, 36, 1627–1639. DOI: 10.1021/ac60214a047.
  • O’Haver, T. A Pragmatic Introduction to Signal Processing, Compcon: Maryland, USA, 2014; 65–88 pp.
  • Morris, J. S.; Coombes, K. R.; Koomen, J.; Baggerly, K. A.; Kobayashi, R. Feature Extraction and Quantification for Mass Spectrometry in Biomedical Applications Using the Mean Spectrum. Bioinformatics 2005, 21, 1764–1775. DOI: 10.1093/bioinformatics/bti254.
  • Zhang, Z.-M.; Tong, X.; Peng, Y.; Ma, P.; Zhang, M.-J.; Lu, H.-M.; Chen, X.-Q.; Liang, Y.-Z. Multiscale Peak Detection in Wavelet Space. Analyst 2015, 140, 7955–7964. DOI: 10.1039/C5AN01816A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.