Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 53, 2020 - Issue 2
187
Views
14
CrossRef citations to date
0
Altmetric
Articles

Determination of effective atomic number of multifunctional materials using backscattered beta particles – a novel method

, , , , , , & show all
Pages 132-139 | Received 21 Sep 2019, Accepted 17 Dec 2019, Published online: 02 Jan 2020

References

  • Hine, G. J. The Effective Atomic Numbers of Materials for Various Gamma Ray Interactions. Physical Review 1952, 85, 725.
  • Harold, E. J.; Cunningham, J. R. The Physics of Radiology; Charles C. Thomas Publishers: USA, 1983.
  • Hosamani, M.; Babu, S. R.; Mirji, S.; Badiger, N. M. Measurement of the Effective Atomic Number of Some Transition and Rare Earth Compounds Using the Rayleigh to Compton Scattering Ratio of Gamma Radiation. Spectroscopy Letters 2017, 50, 370–374. DOI: 10.1080/00387010.2017.1332650.
  • Hosamani, M. M.; Badiger, N. M. Determination of Effective Atomic Number of Composite Materials Using Backscattered Gamma Photons-a Novel Method. Chemical Physics Letters 2018, 695, 94–98. DOI: 10.1016/j.cplett.2018.02.012.
  • Hubbell, J. H.; Veigele, W. J.; Briggs, E. A.; Brown, R. T.; Cromer, D. T.; Howerton, R. J. Atomic Form Factors, Incoherent Scattering Functions, and Photon Scattering Cross Sections. Journal of Physical and Chemical Reference Data 1975, 4, 471–538. DOI: 10.1063/1.555523.
  • Harding, G.; Armstrong, R.; McDaid, S.; Cooper, M. J. A K Edge Filter Technique for Optimization of the Coherent to Compton Scatter Ratio Method. Medical Physics 1995, 22, 2007–2014. DOI: 10.1118/1.597497.
  • Zhang, Q.; Guo, Y.; Bai, H.; Gu, Y.; Xu, Y.; Zhao, J.; Ge, L.; Peng, Y.; Liu, J. Determination of Effective Atomic Numbers and Mass Attenuation Coefficients of Samples Using in‐Situ Energy-Dispersive X‐Ray Fluorescence Analysis. X-Ray Spectrometry 2018, 47, 4–10. DOI: 10.1002/xrs.2799.
  • Issa, S. A. M.; Sayyed, M. I.; Kurudirek, M. Study of Gamma Radiation Shielding Properties of ZnO – TeO2 Glasses. Bulletin of Materials Science 2017, 40, 841–857. DOI: 10.1007/s12034-017-1425-x.
  • Salehi, D.; Sardari, D.; Jozani, M. S. Investigation of Some Radiation Shielding Parameters in Soft Tissue. Journal of Radiation Research and Applied Science 2015, 8, 439–445. DOI: 10.1016/j.jrras.2015.03.004.
  • Yilmaz, D.; Boydaş, E.; Cömert, E. Determination of Mass Attenuation Coefficient and Effective Atomic Numbers for Compounds of the 3D Transition Elements. Radiation Physics and Chemistry 2016, 125, 65.
  • Ramesh Babu, S.; Hosamani, M; Mirji, S.; Badiger, N. M. Determination of Effective Atomic Number of Some Bimolecules for Electron Interaction. IOSR Journal of Applied Physics 2016, 8, 23.
  • Singh, M. P.; Sharma, A.; Singh, B.; Sandhu, B. S. Measurement of Effective Atomic Number and Rayleigh to Compton Cross-Section Ratio for 145 keV Gamma Photons. Journal of Radioanalytical and Nuclear Chemistry 2014, 302, 187–194. DOI: 10.1007/s10967-014-3282-z.
  • Kurudirek, M.; Büyükyıldız, M. Estimation of Effective Atomic Number in the Rayleigh to Compton Scattering Ratio Using Different Methods. Nuclear Instruments and Methods in Physics Research Section A 2016, 820, 80–84. DOI: 10.1016/j.nima.2016.03.029.
  • Kiran, K. U.; et al. Effective Atomic Number of Composite Materials by Compton Scattering Nondestructive Evaluation Method. International Journal of Scientific and Engineering Research 2014, 5, 316.
  • Singh, G.; Singh, M.; Singh, B.; Sandhu, B. S. Experimental Observation of Z Dependence of Saturation Depth of 0.662 MeV Multiply Scattered Gamma Rays. Nuclear Instruments and Methods in Physics Research Section B 2006, 251, 73–78. DOI: 10.1016/j.nimb.2006.05.019.
  • Singh, I.; Singh, B.; Sandhu, B. S.; Sabharwal, A. D. Experimental Evaluation of Effective Atomic Number of Composite Materials Using Back-Scattering of Gamma Photons. Radiation Effects and Defects in Solids 2017, 172, 204–215. DOI: 10.1080/10420150.2017.1286658.
  • Singh, M.; Sharama, K. K. Beta Ray Backscattering Studies from Multi-Component Systems. Japanese Journal of Applied Physics 1984, 23, 351–353. DOI: 10.1143/JJAP.23.351.
  • Sharma, K. K.; Singh, M. Variation of Beta Ray Backscattering with Target Thickness. Journal of Applied Physics 1979, 50, 1529–1532. DOI: 10.1063/1.326141.
  • Sharma, K. K.; Singh, M. Z Dependence of Thick‐Target β‐Ray Backscattering. Journal of Applied Physics 1980, 51, 2239. DOI: 10.1063/1.327848.
  • Soller, M. S.; Cirignano, L.; Lieberman, P.; Squillante, M. R. A System for Precise Determination of Effective Atomic Number by Beta Backscatter. IEEE Transactions on Nuclear Science 1990, 37, 230–233. DOI: 10.1109/23.106624.
  • Galloway, I. Beta Backscattering by Metallic Elements and Simple Compounds. Acta Physica Polonica A 1994, 85 (Suppl), S–13.
  • Manohara, S. R.; Hanagodimath, S. M.; Thind, K. S.; Gerward, L. On the Effective Atomic Number and Electron Density: A Comprehensive Set of Formulas for All Types of Materials and Energies above 1 keV. Nuclear Instruments and Methods in Physics Research B: Beam Interaction with Materials and Atoms 2008, 266, 3906–3912. DOI: 10.1016/j.nimb.2008.06.034.
  • Un, A.; Caner, T. The Direct-Zeff Software for Direct Calculation of Mass Attenuation Coefficient, Effective Atomic Number and Effective Electron Number. Annals of Nuclear Energy 2014, 65, 158–165. DOI: 10.1016/j.anucene.2013.10.041.
  • Anderson, H. H.; Ziegler, J. F. Hydrogen Stopping Powers and Ranges in All Elements. In The Stopping and Ranges of Ions in Matter. Vol. 2; Pergamon Press: Elmsford, New York, 1977.
  • ICRU (International Commission on Radiation Units and Measurements). Stopping Power of Electrons and Positrons. Report 37, 1984.
  • Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 Developments and Applications. IEEE Transactions on Nuclear Science. 2006, 53, 270–278.
  • Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent Developments in GEANT4. Nuclear Instruments and Methods Section A 2016, 835, 186–225.
  • Kirk, D. Curve Fitting for Shot Peening Data Analysis. Coventry University: UK; 2002; 6 pp.
  • Kirk, D. Computer-Based Saturation Curve Analysis. Coventry University: UK; 2005; 16 pp.
  • Kirk, D. Accuracy of Computerized Saturation Curve Analysis. Coventry University: UK; 2006; 24 pp.
  • Kirk, D. Saturation Curve Analysis and Quality Control. Coventry University: UK; 2006; 24 pp.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.