Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 57, 2024 - Issue 6
227
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of bone and dung biochars for potential use as precursors for artificial fertilizers

, &
Pages 342-348 | Received 04 Jan 2024, Accepted 03 May 2024, Published online: 17 May 2024

References

  • Marris, E. Putting the Carbon Back: Black is the New Green. Nature 2006, 442(7103), 624–626. DOI: 10.1038/442624a.
  • Pogson, E. M.; Horvat, J.; Lewis, R. A.; Joseph, S. D. Detection of Biochar Components for Soil Fertility Using THz-TDS. International Conference on Infrared Millimeter and Terahertz Waves. Rome, Italy, 2010; 1–2 pp.
  • Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ Phenomenon: A Model for Sustainable Agriculture in the Humid Tropics. Naturwissenschaften 2001, 88(1), 37–41. DOI: 10.1007/s001140000193.
  • Solomon, D.; Lehmann, J.; Thies, J.; Schäfer, T.; Liang, B.; Kinyangi, J.; Neves, E.; Petersen, J.; Luizão, F.; Skjemstad, J. Molecular Signature and Sources of Biochemical Recalcitrance of Organic C in Amazonian Dark Earths. Geochimica et Cosmochimica Acta. 2007, 71(9), 2285–2298. DOI: 10.1016/j.gca.2007.02.014.
  • Zech, W.; Haumaier, L.; Reinhold, H. Ecological Aspects of Soil Organic Matter in Tropical Land Use. In Humic Substances in Soil and Crop Sciences: Selected Readings; MacCarthy, P., Clapp, C. E., Malcolm, R. L., Bloom, P. R., Ed.; SSSA: Madison, 1990.
  • Cunha, T. J. F.; Madari, B. E.; Canellas, L. P.; Ribeiro, L. P.; Benites, V. d. M.; Santos, G. d. A. Soil Organic Matter and Fertility of Anthropogenic Dark Earths (Terra Preta de Indio) in the Brazilian Amazon Basin. Revista Brasileira de Ciência Do Solo 2009, 33(1), 85–93. DOI: 10.1590/S0100-06832009000100009.
  • Mao, J. D.; Johnson, R. L.; Lehmann, J.; Olk, D. C.; Neves, E. G.; Thompson, M. L.; Schmidt-Rohr, K. Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration. Environmental Science & Technology 2012, 46(17), 9571–9576. 2012, DOI: 10.1021/es301107c.
  • Kebler, M.; Roner, J.; Chenu, C.; Glaser, B.; Knicker, H.; Jahn, R. Prehistoric Alterations of Soil Properties in a Central German Chernozemic Soil: In Search of Pedologic Indicators for Prehistoric Activity. Soil Science 2003, 168, 292–306.
  • Glaser, B. Prehistorically Modified Soils of the Central Amazonia: A Model for Sustainable Agriculture in the Twenty-First Century. Philosophical Transactions of the Royal Society B: Biological Sciences 2007, 362(1478), 187–196. DOI: 10.1098/rstb.2006.1978.
  • Wetterlind, J.; Stenberg, B.; Rossel, R. A. V. Soil Analysis Using Visible and Near Infrared Spectroscopy. Methods in Molecular Biology (Clifton, N.J.) 2013, 953, 95–107. DOI: 10.1007/978-1-62703-152-3_6.
  • Terhoeven-Urselmans, T.; Vagen, T. G.; Spaargaren, O.; Shepherd, K. D. Prediction of Soil Fertility Properties from a Globally Distributed Soil-Mid Infrared Spectral Library. Soil Science Society of America Journal 2010, 74(5), 1792–1799. DOI: 10.2136/sssaj2009.0218.
  • Xie, H. T.; Yang, X. M.; Drury, C. F.; Yang, J. Y.; Zhang, X. D. Predicting Soil Organic Carbon and Total Nitrogen Using Mid- and Near- Infrared Spectra for Brookston Clay Loam Soil in Southwestern Ontario, Canada. Canadian Journal of Soil Science 2011, 91(1), 53–63. DOI: 10.4141/cjss10029.
  • Tinti, A.; Tugnoli, V.; Bonora, S.; Francioso, O. Recent Applications of Vibrational Mid-Infrared (IR) Spectroscopy for Studying Soil Components: A Review. Journal of Central European Agriculture 2015, 16(1), 1–22. DOI: 10.5513/JCEA01/16.1.1535.
  • Linker, R. Soil Classification Via Mid-infrared Spectroscopy. In Computer and Computing Technologies in Agriculture, Volume II. CCTA 2007. The International Federation for Information Processing, vol 259; Li D., Ed.; Springer: Boston, MA, 2008.
  • Jorio, A.; Ribeiro-Soares, J.; Cançado, L.G.; Falcão, N.P.S.; Dos Santos, H.F.; Baptista, D.L.; Martins Ferreira, E.H.; Archanjo, B.S.; Achete, C.A. Microscopy and Spectroscopy Analysis of Carbon Nanostructures in Highly Fertile Amazonian Anthrosoils. Soil and Tillage Research 2012, 122, 61–66. DOI: 10.1016/j.still.2012.02.009.
  • Chaves, R. S.; Junqueira, A. B.; Clement, C. R. The Influence of Soil Quality and Market Orientation on Manioc (Manihot esculenta) Varietal Choice by Smallholder Farmers along the Lower Tapajós River, Pará, Brazil. Human Ecology 2018, 46(2), 229–239. DOI: 10.1007/s10745-018-9981-2.
  • Matějková, Š.; Šimon, T. Application of FTIR Spectroscopy for Evaluation of Hydrophobic/Hydrophilic Organic Components in Arable Soil. Plant, Soil and Environment 2012, 58(4), 192–195. DOI: 10.17221/317/2011-PSE.
  • Renner, R. Rethinking Biochar. Environmental Science & Technology 2007, 41(17), 5932–5933. DOI: 10.1021/es0726097.
  • Maraseni, T. N. Biochar: Maximising the Benefits. International Journal of Environmental Studies 2010, 67(3), 319–327. DOI: 10.1080/00207231003612225.
  • Chaturvedi, K.; Singhwane, A.; Dhangar, M.; Mili, M.; Gorhae, N.; Naik, A.; Prashant, N.; Srivastava, A. K.; Verma, S. Bamboo for Producing Charcoal and Biochar for Versatile Applications. Biomass Conversion and Biorefinery 2023, DOI: 10.1007/s13399-022-03715-3.
  • Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties’, Biochar - An Imperative Amendment for Soil and the Environment. London, UK: IntechOpen; 2019. DOI: 10.5772/intechopen.82151.
  • Kätterer, T.; Roobroeck, D.; Andrén, O.; Kimutai, G.; Karltun, E.; Kirchmann, H.; Nyberg, G.; Vanlauwe, B.; Röing de Nowina, K. Röing de Nowina, K. Biochar Addition Persistently Increased Soil Fertility and Yields in Maize-Soybean Rotations Over 10 Years in Sub-Humid Regions of Kenya. Field Crops Research 2019, 235, 18–26. DOI: 10.1016/j.fcr.2019.02.015.
  • Gupta, R. K.; Hussain, A.; Sooch, S. S.; Kang, J. S.; Sharma, S.; Dheri, G. S. Yadvinder-Singh, Rice Straw Biochar Improves Soil Fertility, Growth, and Yield of Rice-Wheat System on a Sandy Loam Soil. Experimental Agriculture 2020, 56(1), 118–131. DOI: 10.1017/S0014479719000218.
  • Chang, Y.; Rossi, L.; Zotarelli, L.; Gao, B.; Shahid, M. A.; Sarkhosh, A. Biochar Improves Soil Physical Characteristics and Strengthens Root Architecture in Muscadine Grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture 2021, 8(1), 7. DOI: 10.1186/s40538-020-00204-5.
  • Weil, R. R.; Brady, N. C. The Nature and Properties of Soils, 15th ed. London: Pearson Education, 2017.
  • Alkurdi, S. S. A.; Al-Juboori, R. A.; Bundschuh, J.; Les Bowtell, L.; McKnight, S. Effect of Pyrolysis Conditions on Bone Char Characterization and its Ability for Arsenic and Fluoride Removal. Environmental Pollution 2020, 262, 114221. DOI: 10.1016/j.envpol.2020.114221.
  • Atienza-Martínez, M.; Ábrego, J.; Gea, G.; Marías, F. Pyrolysis of Dairy Cattle Manure: Evolution of Char Characteristics. Journal of Analytical and Applied Pyrolysis 2020, 145, 104724. DOI: 10.1016/j.jaap.2019.104724.
  • Lepodise, L. M.; Bosigo, R. Signatures of Aromatic Carbons in the Infrared Absorption Spectra of Soils. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2022, 267(Pt 2), 120469. DOI: 10.1016/j.saa.2021.120469.