278
Views
2
CrossRef citations to date
0
Altmetric
Articles

A feature-preserving point cloud denoising algorithm for LiDAR-derived DEM construction

, &
Pages 146-157 | Received 21 Jan 2019, Accepted 07 Dec 2019, Published online: 23 Dec 2019

References

  • Anderson, E.S., Thompson, J.A., and Austin, R.E., 2005. LIDAR density and linear interpolator effects on elevation estimates. International journal of remote sensing, 26 (18), 3889–3900. doi: 10.1080/01431160500181671
  • Arun, P.V., 2013. A comparative analysis of different DEM interpolation methods. The Egyptian journal of remote sensing and space science, 16 (2), 133–139. doi: 10.1016/j.ejrs.2013.09.001
  • Bater, C.W. and Coops, N.C., 2009. Evaluating error associated with lidar-derived DEM interpolation. Computers & geosciences, 35 (2), 289–300. doi: 10.1016/j.cageo.2008.09.001
  • Billings, S.D., Newsam, G.N., and Beatson, R.K., 2002. Smooth fitting of geophysical data using continuous global surfaces. Geophysics, 67 (6), 1823–1834. doi: 10.1190/1.1527082
  • Chen, C.F., et al., 2013. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data. ISPRS journal of photogrammetry and remote sensing, 82, 1–9. doi: 10.1016/j.isprsjprs.2013.05.001
  • Chen, C.F., et al., 2016a. An improved multi-resolution hierarchical classification method based on robust segmentation for filtering ALS point clouds. International journal of remote sensing, 37 (4), 950–968. doi: 10.1080/01431161.2016.1142687
  • Chen, C.F., et al., 2016b. A robust interpolation method for constructing digital elevation models from remote sensing data. Geomorphology, 268, 275–287. doi: 10.1016/j.geomorph.2016.06.025
  • Chen, C. and Li, Y., 2019. A fast global interpolation method for digital terrain model generation from large LiDAR-derived data. Remote sensing, 11 (11), 1324. doi: 10.3390/rs11111324
  • Chu, H., et al., 2014. Effect of point density and interpolation of LiDAR-derived high-resolution DEMs on landscape scarp identification. GIScience & remote sensing, 51 (6), 731–747. doi: 10.1080/15481603.2014.980086
  • Coleman, J.B., et al., 2011. Holes in the ocean: Filling voids in bathymetric lidar data. Computers & geosciences, 37 (4), 474–484. doi: 10.1016/j.cageo.2010.11.008
  • Cormen, T.H., et al., 2009. Introduction to Algorithms. 3rd ed. MA: MIT Press.
  • Demarsin, K., et al., 2007. Detection of closed sharp edges in point clouds using normal estimation and graph theory. Computer-aided design, 39 (4), 276–283. doi: 10.1016/j.cad.2006.12.005
  • Fan, L., et al., 2014. Propagation of vertical and horizontal source data errors into a TIN with linear interpolation. International journal of geographical information science, 28 (7), 1378–1400. doi: 10.1080/13658816.2014.889299
  • Fleishman, S., Drori, I., and Cohen-Or, D., 2003. Bilateral mesh denoising. ACM Transactions on Graphics (TOG), 950-953.
  • Golden Software, I., 2011. Surfer 10.3 Users’Guide. Golden, CO: Golden Software Inc.
  • Guo, Q., et al., 2010. Effects of topographic variability and Lidar sampling density on several DEM interpolation methods. Photogrammetric engineering and remote sensing, 76 (6), 701–712. doi: 10.14358/PERS.76.6.701
  • Hodgson, M. and Bresnahan, P., 2004. Accuracy of airborne lidar-derived elevation: empirical assessment and error budget. Photogrammetric engineering and remote sensing, 70 (3), 331–339. doi: 10.14358/PERS.70.3.331
  • Hoppe, H., et al., 1992. Surface reconstruction from unorganized points. New York: ACM.
  • Hutchinson, M.F., 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of hydrology, 106 (3-4), 211–232. doi: 10.1016/0022-1694(89)90073-5
  • Hutchinson, M.F. and Gessler, P.E., 1994. Splines — more than just a smooth interpolator. Geoderma, 62 (1-3), 45–67. doi: 10.1016/0016-7061(94)90027-2
  • Jones, T.R., Durand, F., and Zwicker, M., 2004. Normal improvement for point rendering. Computer Graphics and Applications. IEEE computer graphics and applications, 24 (4), 53–56. doi: 10.1109/MCG.2004.14
  • Kumar, B., et al., 2018. A two-stage algorithm for ground filtering of airborne laser scanning data. International journal of remote sensing, 39 (20), 6757–6783. doi: 10.1080/01431161.2018.1466074
  • Li, X., et al., 2013. Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bulletin of the American meteorological society, 94 (8), 1145–1160. doi: 10.1175/BAMS-D-12-00154.1
  • Liu, X., 2008. Airborne LiDAR for DEM generation: some critical issues. Progress in physical geography: earth and environment, 32 (1), 31–49. doi: 10.1177/0309133308089496
  • Lloyd, C.D. and Atkinson, P.M., 2006. Deriving ground surface digital elevation models from LiDAR data with geostatistics. International journal of geographical information science, 20 (5), 535–563. doi: 10.1080/13658810600607337
  • Mederos, B., Velho, L., and De Figueiredo, L.H., 2003. Robusts smoothing of noisy point cloudsed. Proceeding of SIAM Conference on Geometric Design and Computing, 2–10.
  • Montealegre, A., Lamelas, M., and Riva, J., 2015. Interpolation routines assessment in ALS-derived digital elevation models for forestry applications. Remote sensing, 7 (7), 8631–8654. doi: 10.3390/rs70708631
  • Moore, I.D., Grayson, R.B., and Ladson, A.R., 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes, 5 (1), 3–30. doi: 10.1002/hyp.3360050103
  • Pauly, M., Gross, M., and Kobbelt, L.P., 2002. Efficient simplification of point-sampled surfacesed. Proceedings of the conference on Visualization’02IEEE Computer Society, 163–170.
  • Rauth, M. and Strohmer, T., 1998. Smooth approximation of potential fields from noisy scattered data. Geophysics, 63 (1), 85–94. doi: 10.1190/1.1444330
  • Razak, K.A., et al., 2013. Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment. Geomorphology, 190, 112–125. doi: 10.1016/j.geomorph.2013.02.021
  • Robertson, G.P., 2008. Geostatistics for environmental sciences, GS+ Users Guide, Version 5. Plainwell, MI: Gamma Design Software.
  • Salekin, S., et al., 2018. A Comparative Study of Three Non-Geostatistical Methods for Optimising Digital Elevation Model Interpolation. ISPRS international journal of geo-information, 7 (8), 300. doi: 10.3390/ijgi7080300
  • Sithole, G. and Vosselman, G., 2004. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS journal of photogrammetry and remote sensing, 59 (1), 85–101. doi: 10.1016/j.isprsjprs.2004.05.004
  • Stevenson, J.A., Sun, X., and Mitchell, N.C., 2010. Despeckling SRTM and other topographic data with a denoising algorithm. Geomorphology, 114 (3), 238–252. doi: 10.1016/j.geomorph.2009.07.006
  • Sun, X., et al., 2007. Fast and effective feature-preserving mesh denoising. IEEE transactions on visualization and computer graphics, 13 (5), 925–938. doi: 10.1109/TVCG.2007.1065
  • Wahba, G., 1990. Spline Models for Observational Data. Philadelphia, PA: SIAM.
  • Wilson, J.P., 2012. Digital terrain modeling. Geomorphology, 137 (1), 107–121. doi: 10.1016/j.geomorph.2011.03.012
  • Yang, M. and Lee, E., 1999. Segmentation of measured point data using a parametric quadric surface approximation. Computer-aided design, 31 (7), 449–457. doi: 10.1016/S0010-4485(99)00042-1
  • Zheng, Y., et al., 2011. Bilateral normal filtering for mesh denoising. IEEE transactions on visualization and computer graphics, 17 (10), 1521–1530. doi: 10.1109/TVCG.2010.264

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.