247
Views
1
CrossRef citations to date
0
Altmetric
Articles

A practical method for calculating reliable integer float estimator in GNSS precise positioning

ORCID Icon, &
Pages 97-107 | Received 10 Jul 2019, Accepted 14 Jan 2020, Published online: 29 Jan 2020

References

  • Betti, B., Crespi, M., and Sanso, F., 1993. A geometric illustration of ambiguity resolution in GPS theory and a Bayesian approach. Manuscripta geodaetica, 18, 317–330.
  • Blewitt, G., 1989. Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. Journal of geophysical research, 94 (B8), 10187–10203. doi: 10.1029/JB094iB08p10187
  • Brack, A., Henkel, P., and Günther, C., 2014. Sequential best integer-equivariant estimation for GNSS. Navigation, 61 (2), 149–158. doi: 10.1002/navi.58
  • De Jonge, P.J., and Tiberius, C. 1996. The LAMBDA method for integer ambiguity estimation: implementation aspects, LGR-Series, No 12. Technical report, Delft University of Technology.
  • De Lacy, M.C, Sanso, F, Rodriguez-Caderot, G, 2002. The Bayesian approach applied to GPS ambiguity resolution. A mixture model for the discrete–real ambiguities alternative. Journal of geodesy, 76 (2), 82–94. doi: 10.1007/s00190-001-0226-5
  • Dong, D.N., and Bock, Y., 1989. Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. Journal of geophysical research: solid earth, 94 (B4), 3949–3966. doi: 10.1029/JB094iB04p03949
  • Euler, H.J., and Schaffrin, B. 1991. On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. In: Kinematic systems in geodesy, surveying, and remote sensing. New York: Springer, 285–295.
  • Frei, E., and Beutler, G., 1990. Rapid static positioning based on the fast ambiguity resolution approach (FARA): theory and first result. Manuscripts geodaetica, 15 (4), 325–356.
  • Li, B., et al., 2014. GNSS ambiguity resolution with controllable failure rate for long baseline network RTK. Journal of geodesy, 88 (2), 99–112. doi: 10.1007/s00190-013-0670-z
  • Li B, Verhagen S, Teunissen PJG (2013) GNSS integer ambiguity estimation and evaluation: LAMBDA and Ps-LAMBDA. In China satellite navigation conference (CSNC) 2013 proceedings. Berlin Heidelberg: Springer, 291–301.
  • Li, T., and Wang, J., 2014. Analysis of the upper bounds for the integer ambiguity validation statistics. GPS solutions, 18 (1), 85–94. doi: 10.1007/s10291-013-0312-1
  • Teunissen, P.J.G. 1993. Least squares estimation of the integer GPS ambiguities. Proc., IAG General Meeting, Series No. 6, Delft Geodetic Computing Centre.
  • Teunissen, P.J.G., 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of geodesy, 70 (1–2), 65–82. doi: 10.1007/BF00863419
  • Teunissen, P.J.G., 1998. Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of geodesy, 72 (10), 606–612. doi: 10.1007/s001900050199
  • Teunissen, P.J.G., 1999. An optimality property of the integer least-squares estimator. Journal of geodesy, 73 (11), 587–593. doi: 10.1007/s001900050269
  • Teunissen, P.J.G., 2000. The success rate and precision of GPS ambiguities. Journal of geodesy, 74 (3-4), 321–326. doi: 10.1007/s001900050289
  • Teunissen, P.J.G., 2003a. Towards a unified theory of GNSS ambiguity resolution. Journal of global positioning systems, 2 (1), 1–12. doi: 10.5081/jgps.2.1.1
  • Teunissen, P.J.G., 2003b. Integer aperture GNSS ambiguity resolution. Artificial satellites, 38 (3), 79–88.
  • Teunissen, P.J.G., 2003c. A carrier phase ambiguity estimator with easy-to-evaluate fail-rate. Artificial satellites, 38 (3), 89–96.
  • Teunissen, P.J.G., 2003d. Theory of integer equivariant estimation with application to GNSS. Journal of geodesy, 77 (7–8), 402–410. doi: 10.1007/s00190-003-0344-3
  • Teunissen, P.J.G., 2004. Penalized GNSS ambiguity resolution. Journal of geodesy, 78 (4–5), 235–244. doi: 10.1007/s00190-004-0393-2
  • Teunissen, P.J.G., 2005a. GNSS ambiguity resolution with optimally controlled failure-rate. Artificial satellites, 40 (4), 219–227.
  • Teunissen, P.J.G., 2005b. On the computation of the best integer equivariant estimator. Artificial satellites, 40 (3), 161–171.
  • Teunissen, P.J.G., and Verhagen, S., 2009. The GNSS ambiguity ratio-test revisited: a better way of using it. Survey review, 41 (312), 138–151. doi: 10.1179/003962609X390058
  • Tiberius, C., and Jonge, P. 1995. Fast positioning using the LAMBDA method. In: Proceedings of DSNS-95, Bergen, Norway, Paper 30, p. 8.
  • Verhagen, S., Li, B., and Teunissen, P.J.G., 2013a. Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications. Computers & geosciences, 54, 361–376. doi: 10.1016/j.cageo.2013.01.014
  • Verhagen S, Teunissen PJG (2005). Performance comparison of the BIE estimator with the float and fixed GNSS ambiguity estimators. In A Window on the Future of Geodesy. Berlin, Heidelberg: Springer, 428–433.
  • Verhagen, S., and Teunissen, P.J.G., 2006a. New global navigation satellite system ambiguity resolution method compared to existing approaches. Journal of guidance, control, and dynamics, 29 (4), 981–991. doi: 10.2514/1.15905
  • Verhagen, S., and Teunissen, P.J.G., 2006b. On the probability density function of the GNSS ambiguity residuals. GPS solutions, 10 (1), 21–28. doi: 10.1007/s10291-005-0148-4
  • Verhagen, S., and Teunissen, P.J.G., 2013b. The ratio test for future GNSS ambiguity resolution. GPS solutions, 17 (4), 535–548. doi: 10.1007/s10291-012-0299-z
  • Wang, L., and Feng, Y., 2013. Fixed failure rate ambiguity validation methods for GPS and COMPASS. Proceedings of China Satellite Navigation Conference (CSNC), 2013, volume 2. Springer, 396–415.
  • Wang, J., Stewar, M.P., and Tsakiri, M., 1998. A discrimination test procedure for ambiguity resolution on-the-fly. Journal of geodesy, 72 (11), 644–653. doi: 10.1007/s001900050204
  • Wang, L., and Verhagen, S., 2015. A new ambiguity acceptance test threshold determination method with controllable failure rate. Journal of geodesy, 89 (4), 361–375. doi: 10.1007/s00190-014-0780-2
  • Wen, Z., et al., 2012. Best integer equivariant estimation for precise point positioning. Proceedings ELMAR, 2012, 279–282. IEEE.
  • Wu, Z., and Bian, S., 2015. GNSS integer ambiguity validation based on posterior probability. Journal of geodesy, 89 (10), 961–977. doi: 10.1007/s00190-015-0826-0
  • Yu, X., Wang, J., and Gao, W., 2017. An alternative approach to calculate the posterior probability of GNSS integer ambiguity resolution. Journal of geodesy, 91 (3), 295–305. doi: 10.1007/s00190-016-0963-0
  • Zhang, J., et al., 2015. Integer aperture ambiguity resolution based on difference test. Journal of geodesy, 89 (7), 667–683. doi: 10.1007/s00190-015-0806-4
  • Zhu, J., Ding, X., and Chen, Y., 2001. Maximum-likelihood ambiguity resolution based on Bayesian principle. Journal of geodesy, 75 (4), 175–187. doi: 10.1007/s001900100167

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.