385
Views
3
CrossRef citations to date
0
Altmetric
Articles

Performance investigation of Trimble RTX correction service with multi-GNSS constellation

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 44-54 | Received 20 Jun 2021, Accepted 23 Oct 2021, Published online: 11 Nov 2021

References

  • Alcay, S., and Turgut, M., 2021. Evaluation of the positioning performance of multi-GNSS RT-PPP method. Arabian journal of geosciences, 14 (3), 155. doi:10.1007/s12517-021-06534-4.
  • Alkan, R.M., et al., 2020. Comparative analysis of real-time kinematic and PPP techniques in dynamic environment. Measurement, 163, 107995. doi:10.1016/j.measurement.2020.107995.
  • Alkan, R.M., 2021. Cm-level high accurate point positioning with satellite-based GNSS correction service in dynamic applications. Journal of spatial science, 1–9. doi:10.1080/14498596.2019.1643795.
  • An, X., Meng, X., and Jiang, W., 2020. Multi-constellation GNSS precise point positioning with multi-frequency raw observations and dual-frequency observations of ionospheric-free linear combination. Satellite navigation, 1 (1), 1–13. doi:10.1186/s43020-020-0009-x.
  • Bellone, T., et al., 2016. Real-time monitoring for fast deformations using GNSS low-cost receivers. Geomatics, natural hazards and risk, 7 (2), 458–470. doi:10.1080/19475705.2014.966867.
  • Brandl, M., et al. 2014. Advancing Trimble RTX technology by adding BeiDou and Galileo. In: Eur. Navig. Conf., Apr.
  • Chen, X., et al., 2011. Trimble RTX, an innovative new approach for network RTK. In: Proceedings of the 24th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2011), Sep, 2214–2219.
  • Chen, J., et al., 2021. Evaluating the latest performance of precise point positioning in multi-GNSS/RNSS: GPS, GLONASS, BDS, Galileo and QZSS. The journal of navigation, 74 (1), 247–267. doi:10.1017/S0373463320000508.
  • Choy, S., et al., 2017. GNSS satellite-based augmentation systems for Australia. GPS solutions, 21 (3), 835–848. doi:10.1007/s10291-016-0569-2.
  • Colombo, O.L., 2008. Real-time, wide-area, precise kinematic positioning using data from internet NTRIP streams. In: Proceedings of ION-GNSS-2008, Institute of Navigation, Savannah, Georgia, 327–337.
  • Dong, D., Herring, T., and King, R., 1998. Estimating regional deformation from a combination of space and terrestrial geodetic data. Journal of geodesy, 72, 200–214. doi:10.1007/s001900050161.
  • Erol, S., et al., 2020. Performance analysis of real-time and post-mission kinematic precise point positioning in marine environments. Geodesy and geodynamics, 11 (6), 401–410. doi:10.1016/j.geog.2020.09.002.
  • Glocker, M., et al., 2012. Global precise multi-GNSS positioning with trimble centerpoint RTX. In: 2012 6th ESA workshop on satellite navigation technologies (Navitec 2012) & European workshop on GNSS signals and signal processing, December. IEEE, 1–8. doi:10.1109/NAVITEC.2012.6423060.
  • Hadas, T., and Bosy, J., 2015. IGS RTS precise orbits and clocks verification and quality degradation over time. GPS solutions, 19 (1), 93–105. doi:10.1007/s10291-014-0369-5.
  • Hatch, R., 1982. The synergism of GPS code and carrier measurements. In: Proceedings of the third international symposium on satellite Doppler positioning, Physical Sciences Laboratory of New Mexico State University, vol. 2, 1213–1231.
  • Herring, T.A., et al., 2015. Introduction to GAMIT/GLOBK release 10.6. Cambridge, MA: Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology.
  • İlçi, V., 2019. Accuracy comparison of real-time GNSS positioning solutions: case study of mid-north Anatolia. Measurement, 142, 40–47. doi:10.1016/j.measurement.2019.04.067.
  • Jin, S., 2012. GNSS atmospheric and ionospheric sounding – methods and results. In: Global navigation satellite systems: signal, theory and applications, 359. doi:10.5772/28715
  • Kazmierski, K., Zajdel, R., and Sośnica, K., 2020. Evolution of orbit and clock quality for real-time multi-GNSS solutions. GPS solutions, 24 (4), 1–12. doi:10.1007/s10291-020-01026-6.
  • Kouba, J., and Héroux, P., 2001. Precise point positioning using IGS orbit and clock products. GPS solutions, 5 (2), 12–28. doi:10.1007/PL00012883.
  • Krzyżek, R., 2013. Verification of applicability of the Trimble RTX satellite technology with xFill function in establishing surveying control networks. Geodesy and cartography, 62 (2), 217–233. doi:10.2478/geocart-2013-0014.
  • Leandro, R., et al., 2011. RTX positioning: the next generation of cm-accurate real-time GNSS positioning. In: Proceedings of the 24th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2011), Sep, 1460–1475.
  • Leick, A., Rapoport, L., and Tatarnikov, D., 2015. GPS satellite surveying. 4th ed. Hoboken: Wiley.
  • Li, X., et al., 2015. Multi-GNSS meteorology: real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. IEEE transactions on geoscience and remote sensing, 53 (12), 6385–6393. doi:10.1109/TGRS.2015.2438395.
  • Liu, X., et al., 2015. Real-time multi-constellation precise point positioning with integer ambiguity resolution. In: 2015 international association of institutes of navigation world congress (IAIN), Oct. IEEE, 1–7. doi:10.1109/IAIN.2015.7352262.
  • Lu, C., et al., 2017. Real-time tropospheric delays retrieved from multi-GNSS observations and IGS real-time product streams. Remote sensing, 9 (12), 1317. doi:10.3390/rs9121317.
  • Li, X., Li, X., Yuan, Y., Zhang, K., Zhang, X., Wickert, J., 2018. Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS,BDS, GLONASS, Galileo. Journal of Geodesy, 92 (6), 579–608. doi:10.1007/s00190-017-1081-3.
  • Melbourne, W.G., 1985. The case for ranging in GPS-based geodetic systems. In: Proceedings first international symposium on precise positioning with the global positioning system, 15–19 Apr Rockville, 373–386.
  • Ochałek, A., et al., 2018. Accuracy evaluation of real-time GNSS precision positioning with RTX Trimble technology. Civil and environmental engineering reports, 28 (4), 49–61. doi:10.2478/ceer-2018-0050.
  • Ogutcu, S., 2020. Assessing the contribution of Galileo to GPS+ GLONASS PPP: towards full operational capability. Measurement, 151, 107143. doi:10.1016/j.measurement.2019.107143.
  • Pelc-Mieczkowska, R., and Tomaszewski, D., 2020. Space state representation product evaluation in satellite position and receiver position domain. Sensors, 20 (13), 3791. doi:10.3390/s20133791.
  • Petit, G., and Luzum, B., 2010. IERS conventions (2010). Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, IERS technical note 36, 179 pp.
  • Ramachandran, D., et al., 2017. Real-time precise point positioning (RT-PPP) for positioning and mapping. In: Global civil engineering conference, Jul. Singapore: Springer, 891–913. doi:10.1007/978-981-10-8016-6_64.
  • Ruhl, C.J., et al., 2017. The value of real-time GNSS to earthquake early warning. Geophysical research letters, 44 (16), 8311–8319. doi:10.1002/2017GL074502.
  • Wang, Z., et al., 2018. Assessment of multiple GNSS real-time SSR products from different analysis centers. ISPRS international journal of geo-information, 7 (3), 85. doi:10.3390/ijgi7030085.
  • Weber, G., et al., 2007. Real-time clock and orbit corrections for improved point positioning via NTRIP. In: Proceedings of ION-GNSS-2007, Institute of Navigation, 25–28 Sep Fort Worth, TX, USA, 1992–1998.
  • Wübbena, G., 1985. Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of first international symposium on precise positioning with the global positioning system, 15–19 Apr Rockville, 403–412.
  • Zhang, F., et al., 2013. Trimble centerpoint RTX – a first study on supporting Galileo. In: Proceedings of the European navigation conference, Apr Vienna, Austria, 23–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.