123
Views
0
CrossRef citations to date
0
Altmetric
Articles

The enhanced search procedure in a coordinate domain for precise satellite positioning

ORCID Icon, &
Pages 91-99 | Received 05 Oct 2022, Accepted 12 Jun 2023, Published online: 29 Jun 2023

References

  • Baselga, S., 2010. Global optimization applied to GPS positioning by ambiguity functions. Measurement science and technology, 21 (12), 125102. doi:10.1088/0957-0233/21/12/125102.
  • Caspary, W.F., 2000. Concepts of network and deformation analysis. Sydney: School of Geomatic Engineering UNSW.
  • Cellmer, S., 2012. A graphic representation of the necessary condition for the MAFA method. IEEE transactions on geoscience and remote sensing, 50 (2), 482–488.
  • Cellmer, S., 2013. Search procedure for improving modified ambiguity function approach. Survey review, 45 (332), 380–385.
  • Cellmer, S., Nowel, K., and Fischer, A., 2021. A search step optimization in an ambiguity function-based GNSS precise positioning. Survey review. doi:10.1080/00396265.2021.1885947.
  • Cellmer, S., Nowel, K., and Fischer, A., 2022. Reduction as an improvement of a precise satellite positioning based on an ambiguity function. Journal of applied geodesy, 16 (4), 385–392. doi:10.1515/jag-2022-0005.
  • Cellmer, S., Nowel, K., and Kwasniak, D., 2018. The new search method in precise GNSS positioning. IEEE transactions on aerospace and electronic systems, 54 (1), 404–415.
  • Cellmer, S., Wielgosz, P., and Rzepecka, Z., 2010. Modified ambiguity function approach for GPS carrier phase positioning. Journal of geodesy, 84 (4), 264–275.
  • Chang, X., Yang, X., and Zho, T., 2005. MLAMBDA: a modified LAMBDA method for integer least squares estimation. Journal of geodesy, 79 (9), 552–565.
  • Counselman, C., and Gourevitch, S., 1981. Miniature interferometer terminals for earth surveying: ambiguity and multipath with the global positioning system. IEEE transactions on geoscience and remote sensing, 19 (4), 244–252.
  • de Jonge, P.J., and Tiberius, C.C.J.M., 1996. The LAMBDA method for integer ambiguity estimation: implementation aspects. Publications of the Delft Computing Centre. LGR-Series No. 12.
  • Hassibi, A., and Boyd, S., 1998. Integer parameter estimation in linear models with applications to GPS. IEEE transactions on signal processing, 46 (11), 2938–2952.
  • Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2008. GNSS-global navigation satellite systems – GPS, GLONASS, Galileo & more. Vienna: Springer-Verlag.
  • Koch, K.R., 1999. Parameter estimation and hypothesis testing in linear models. Berlin: Springer-Verlag. doi:10.1007/978-3-662-03976-2.
  • Kwasniak, D., Cellmer, S., and Nowel, K., 2016. Schreiber's differencing scheme applied to carrier phase observations in the MAFA method. In: Proceedings of 2016 Baltic geodetic congress (BGC geomatics), Gdansk, Poland, 197–204.
  • Kwasniak, D., Cellmer, S., and Nowel, K. 2017. Single frequency RTK positioning using Schreiber's differencing scheme. In: 2017 Baltic geodetic congress (BGC geomatics), Gdansk, Poland, 307–311.
  • LAMBDA method from TU Delft. 2021. Available from: https://www.tudelft.nl/citg/over-faculteit/afdelingen/geoscience-remote-sensing/research/lambda/lambda [Accessed 9 May 2021].
  • Leick, A., Rapoport, L., and Tatarnikov, D., 2015. GPS satellite surveying. 4th ed. Hoboken, NJ: John Wiley and Sons.
  • Liu, L.T., et al., 1999. A new approach to GPS ambiguity decorrelation. Journal of geodesy, 73, 478–490.
  • Nowel, K., Cellmer, S., and Kwasniak, D., 2018. Mixed integer-real least squares estimation for precise GNSS positioning using a modified ambiguity function approach. GPS solutions, 22 (31), 1–11. doi:10.1007/s10291-017-0694-6.
  • Remondi, B., 1984. Using the global positioning system (GPS) phase observable for relative geodesy: modeling, processing and results. Thesis (PhD), Center for Space Research, University of Texas at Austin.
  • Teunissen, P., 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of geodesy, 70 (1–2), 65–82.
  • Teunissen, P., 1999. An optimality property of the integer least-squares estimator. Journal of geodesy, 73, 587–593. doi:10.1007/s001900050269.
  • Teunissen, P., 2003. Theory of integer equivariant estimation with application to GNSS. Journal of geodesy, 77, 402–410. doi:10.1007/s00190-003-0344-3.
  • Teunissen, P., 2005. Integer aperture bootstrapping: a new GNSS ambiguity estimator with controllable fail-rate. Journal of geodesy, 79, 389–397. doi:10.1007/s00190-005-0481-y.
  • Teunissen, P., 2006. Adjustment theory, an introduction. Delft: VSSD. ISBN 978-90-407-1974-5; Electronic version ISBN 978-90-6562-215-0.
  • Wang, Y., et al., 2019. Improved pitch-constrained ambiguity function method for integer ambiguity resolution in BDS/MIMU-integrated attitude determination. Journal of geodesy, 93 (4), 561–572. doi:10.1007/s00190-018-1182-7.
  • Wang, Y., Zhan, X., and Zhang, Y., 2007. Improved ambiguity function method based on analytical resolution for GPS attitude determination. Measurement science and technology, 18 (9), 2985–2990.
  • Wieser, A., 2004. Reliability checking for GNSS baseline and network processing. GPS solutions, 8, 55–66. doi:10.1007/s10291-004-0091-9.
  • Wu, H., et al., 2019. Multivariate constrained GNSS real-time full attitude determination based on attitude domain search. Journal of navigation, 72 (2), 483–502. doi:10.1017/S0373463318000784.
  • Xu, P., 2001. Random simulation and GPS decorrelation. Journal of geodesy, 75 (7–8), 408–423.
  • Xu, P., 2006. Voronoi cells, probabilistic bounds, and hypothesis testing in mixed integer linear models. IEEE transactions on information theory, 52 (7), 3122–3138.
  • Xu, P., 2012. Parallel Cholesky-based reduction for the weighted integer least squares problem. Journal of geodesy, 86 (1), 35–52.
  • Zhao, Y., et al., 2022. An optimization method of ambiguity function based on multi-antenna constrained and application in vehicle attitude determination. Micromachines, 13 (1), 64. doi:10.3390/mi13010064.
  • Zhou, Y., 2011. A new practical approach to GNSS high-dimensional ambiguity decorrelation. GPS solutions, 15, 325–331.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.