Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 30, 2000 - Issue 18
102
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

The Preparation of 4,5-Dihydro-3-Aryl-Naphth-[1,2-c]- Isoxazoles From Dilithiated 1-Tetralone Oxime and Aromatic Esters

, , , , , & show all
Pages 3391-3404 | Received 11 Dec 1999, Published online: 04 Dec 2007

References

  • Lang , S. A. Jr. and Lin , Y I . 1984 . “Comprehensive Heterocyclic Chemistry” , Edited by: Potts , K. E. Vol. 6, Part 4B , 61 – 82 . New York : Pergamon Press .
  • Quilico , A. 1962 . “The Chemistry of Heterocyclic Compounds” , Edited by: Wiley , R. H. 5 – 35 . New York : Interscience Publishers, New York . Several recent synthesis reports
  • Alberola , A. , Banez , J. M. , Calvo , L. , Rodriguez , M. T. and Sanudo , M. C. 1993 . J. Heterocycl. Chem. , 30 : 467
  • Wei , X. , Fang , J. , Hu , Y. and Hu , H. 1992 . Synthesis , : 1205
  • Moriya , O. , Nakamura , H. , Kageyama , T. and Urata , Y. 1989 . Tetrahedron Lett. , 30 : 3987
  • Balasundaram , B. and Perumal , P. T. 1990 . Synthetic Communications , 20 : 3161
  • 114 – 127 . See ref. 1a.
  • Wunch , K. H. and Boulton , A. J. 1967 . Adv. Heterocycl. Chem. , 8 : 277
  • Ogata , M. , Matsumoto , H. and Kano , H. 1969 . Tetrahedron , 52 : 5205
  • Singeman , G. M. 1975 . J. Heterocycl. Chem. , 12 : 877
  • Wrobel , Z. and Makosza , M. 1995 . Heterocycl. , 40 : 187
  • Davis , R. B. and Pizzini , L. C. 1960 . J. Org. Chem. , 25 : 1884
  • Johnson , W. S. and Shelberg , W. E. 1945 . J. Am. Chem. Soc. , 67 : 1745
  • Suzuka , Y. and Minami , N. Japan Kokkai JP. . 48099161 . Chem. Abstr.197480: 95923.
  • Sami , M. I. , Gandhi , K. K. and Ray , J. K. 1991 . Org. Prep. Proced. Int. , 23 : 186
  • Nitz , T. J. , Volkots , D. L. , Aldous , J. A. and Oglesby , R. C. 1994 . J. Org. Chem. , 59 : 5828
  • Barber , G. N. and Olofson , R. A. 1978 . J. Org. Chem. , 43 : 3015
  • Basel , Y. and Hassner , A. 1997 . Synthesis , : 309
  • Moriya , O. , Takenaka , H. , Iyoda , M. , Urata , Y. and Endo , T. 1999 . J. Chem. Soc., Perkin Trans 1 , : 413
  • Sakamoto , T. , Uchiyama , D. , Kondo , Y. and Yamanaka , H. 1993 . Chem. Pharm. Bull. , 41 : 478
  • Beam , C. F. , Dyer , M. C. D. , Schwarz , R. A. and Hauser , C. R. 1970 . J. Org. Chem. , 35 : 1806
  • Beam , C. F. , Foote , R. S. and Hauser , C. R. 1972 . J. Heterocycl. Chem. , 9 : 183
  • Sandifer , R. M. , Dasher , L. W. , Hollinger , W. M. , Thomas , C. W. , Reames , D. C. , Beam , C. F. , Foote , R. S. and Hauser , C. R. 1975 . J. Heterocycl. Chem. , 72 : 1159
  • Perkins , M. , Beam , C. F. , Dyer , M. C. D. and Hauser , C. R. 1975 . Org. Synth. , 55 : 39
  • Sandifer , R. M. , Shaffer , L. M. , Hollinger , W. M. , Reames , D. C. and Beam , C. F. 1976 . J. Heterocycl. Chem. , 13 : 607
  • Beam , C. F. , Shealy , K. D. , Harris , C. E. , Shealy , N. L. , Dasher , L. W. , Hollinger , W. M. , Sandifer , R. M. and Reames , D. C. 1976 . J. Pharm. Sci. , 65 : 1408
  • Fulmer , T. D. , Dasher , L. P. , Bobb , B. L. , Wilson , J. D. , Sides , K. L. and Beam , C. F. 1980 . J. Heterocycl. Chem. , 17 : 799
  • Livingston , M. J. , Chick , M. F. , Shealy , E. O. , Park , D. J. , Fulmer , T. D. and Beam , C. F. 1982 . J. Heterocycl. Chem. , 19 : 215
  • Huff , A. M. , Hall , H. L. , Smith , M. J. , O'Grady , S. A. , Waters , F. C. , Fengl , R. W. , Welch , J. A. and Beam , C. F. 1985 . J. Heterocycl. Chem. , 22 : 501
  • Davis , S. E. , Church , A. C. , Scott , A. S. , Throckmorton , H. L. , Studer-Martinez , S. L. and Beam , C. F. 1997 . J. Organometal. Chem. , 533 : 125
  • Williams , A. J. , Angel , A. J. , French , K. L. , Hurst , D. R. , Beckman , D. D. and Beam , C. F. 1977 . Synthetic Communications , 29 : 199
  • Williams , A. R. , Finefrock , A. E. , Townsend , J. D. , Angel , A. J. , Hurst , D. R. , Rampey , M. E. , Halkyard , C. E. , Studer-Martinez , S. L. and Beam , C. F. 1998 . The Chemist , 75 : 7
  • Hoskin , D. H. and Olofson , R. A. 1982 . J. Org. Chem. , 47 : 5222
  • Fos , E. , Borras , L. , Gasull , M. , Mauleon , D. and Carganico , G. 1992 . J. Heterocycl. Chem. , 29 : 203
  • Shriner , R. L. , Hermann , C. K. F. , Morrill , T. C. , Curtin , D. Y. and Fuson , R. C. , eds. 1997 . “ The preparation of the oxime from 1-tetralone involved a minor modification of a well documented procedure where 20 g of hydroxylamine hydrochloride was dissolved in 120 mL of water followed by the addition of 80 mL of 10% NaOH solution. The solution was placed in a flask or beaker and heated on a stir plate while 20 g of 1-tetralone dissolved in 30--40 mL of ethanol was added along with enough extra ethanol to affect the solution. The solution was heated just enough to slowly boil off solvents [fume hood], and finally an olly layer/phase appeared. The mixture was refrigerated, and crystallization occurred immediately. After filtration, the solid was recrystallized from ethanol, and it was dry enough after filtration for immediate use [15--20 min.], although use of a vacuum desiccator is recommended, [80--90% yield after recrystallization from ethanol] ” . In “The Systematic Identification of Organic Compounds”, , seventh edition , 323 New York : John Wiley and Sons, Inc., New York .
  • Melting points were obtained with a Mel-Temp II melting point apparatus in open capillary tubes and are uncorrected. ,
  • Shriner , R. L. , Hermann , C. K. F. , Morrill , T. C. , Curtin , D. Y. and Fuson , R. C. , eds. 1997 . Combustion analyses for C, H and N , 323 Whitehouse, NJ : Quantitative Technologies, Inc. . P.O. Box 470, Salem Industrial Park, Bldg. 5, 08888.
  • NMR Data; compd. no., (solvent), [300 MHz] 1H NMR, 13C NMR, δ ppm: 1. 1H NMR (DMSO-d6), 3.02 (s, 4H, CH2CH2), 7.26--7.53, 7.77--7.80, and 8.00--8.03 (m, 9H, ArH); 13C NMR (DMSO-d6), 18.4, 28.2, 110.8, 123.6, 125.0, 125.9, 127.1, 127.4, 128.3, 129.1, 129.7, 130.2, 137.8, 159.1, and 161.5. 2. 1H NMR (DMSO-d6), 3.14 (s, 4H, CH2CH2), 4.00 (s, 3H, ArOCH3), and 7.27--8.03 (m, 8H, ArH); 13C NMR (DMSO-d6), 18.3, 28.2, 55.3, 109.2, 114.5, 120.1, 123.6, 125.1, 127.0, 127.4, 128.8, 130.1, 137.7, 158.9, 160.1, and 161.7. 3. 1H NMR (CDCl3), 2.96 (s, 4H, CH2CH2) 3.81 (s, 6H, OCH3), 6.88--8.03 (m, 7H, ArH); 13C NMR (CDCl3), 19.2, 28.8, 55.3, 101.3, 104.1, 110.6, 124.1, 125.6, 126.9, 128.3, 129.6, 129.8, 137.3, 159.4, 160.7, and 161.8. 4. 1H NMR (CDCl3), 3.00 (s, 4H, CH2CH2), 3.93 (s, 3H, OCH3), 3.97 (s, 3H, OCH3), 6.94 (s, 1H, ArH), 7.26--7.39 and 7.98--8.01 (m, 6H, ArH); 13C NMR (CDCl3), 19.6, 29.4, 56.30, 56.36, 109.4, 109.6, 111.4, 119.5, 121.6, 124.6, 126.2, 127.4, 128.8, 130.2, 137.7, 149.4, 150.3, 159.9, and 162.5. 5. 1H NMR (CDCl3), 3.02 (s, 4H, CH2CH2), 3.91 (s, 3H, ArOCH3), 3.94 (s, 6H, ArOCH3), 6.87 (s, 2H, ArH), 6.99, 7.27--7.38 and 7.98--8.01 (m, 4H, ArH); 13C NMR (CDCl3) 19.5, 29.2, 56.5, 61.2, 103.7, 110.2, 123.9, 124.5, 126.0, 127.3, 128.6, 130.1, 137.5, 139.3, 153.6, 159.8, and 162.2. 6. 1H NMR (CDCl3), 2.35 (s, 3H, ArCH3) 3.02 (s, 4H, CH2CH2), 6.87 (s, 2H, ArH), 7.27--7.36 and 7.95--7.98 (m, 4H, ArH); 13C NMR (CDCl3), 19.5, 21.6, 29.3, 110.4, 124.1, 124.5, 126.1, 127.2, 128.3, 128.6, 130.0, 131.3, 137.7, 138.6, 159.7, and 162.7. 7. 1H NMR (CDCl3), 1.35 (s, 9H, C(CH3 3), 3.00 (s, 4H, CH3CH3), 7.24--7.38, 7.48--7.52, 7.65--7.74, and 7.74--8.01 (m, 8H, ArH); 13C NMR (CDCl3), 19.4, 29.3, 31.4, 35.1, 110.2, 124.5, 125.7, 125.9, 126.10, 126.14, 127.2, 128.7, 130.1, 137.7, 152.8, 159.8, and 162.6. 8. 1H NMR (CDCl3), 2.37 (s, 6H, ArCH3), 2.99 (s, 4H, CH2CH2), 7.05 (s, 1H, ArH), 7.23--7.37 and 7.97--8.00 (m, 6H, ArH); 13C NMR (CDCl3), 19.3, 21.4, 29.1, 110.2, 123.8, 124.2, 125.9, 127.0, 128.1, 128.4, 129.8, 131.0, 137.4, 138.3, 159.5, and 162.5. 9. 1H NMR (CDCl3), 2.89 (s, 4H, CH2CH2) 7.12--7.32, 7.51--7.62, (m, 7H, ArH), and 7.85 (d, 1H, ArH); 13CNMR (CDCl3), 19.1, 28.7, 111.1, 124.0, 124.2, 125.4, 125.8, 127.0, 128.3, 129.1, 129.6, 129.89, 129.93, 134.6, 137.1, 159.5, and 160.5. 10. 1H NMR (DMSO-d6;), 3.00 (s, 4H, CH2CH2), 7.35--7.47, 7.61--7.63, and 7.79--7.87 (m, 8H, ArH); 13C NMR (DMSOA), 18.3, 28.0, 111.3, 123.7, 124.9, 126.3, 127.2, 127.7, 128.9, 129.3, 130.4, 134.5, 137.8, 159.3, and 160.6. 11. 1H NMR (CDCl3), 3.00 (s, 4H, CH2CH2), 7.25--7.35, 7.58--7.65, and 7.65--7.99 (m, 8H, ArH); 13C NMR (CDCl3), 19.5, 29.2, 111.1, 123.9, 124.6, 125.8, 127.3, 127.4, 127.7, 128.7, 130.3, 132.3, 137.5, 159.9, and 161.3. 12. 1H NMR (CDCl3), 2.98 (s, 4H, CH2CH2), 7.12--7.38, 7.70--7.76, and 7.96--7.99 (m, 8H, ArH); 13C NMR (CDCl3), 19.4, 29.2, 110.3, 116.0, 116.3, 124.5, 124.7, 124.8, 125.9, 127.3, 128.2, 128.3, 128.7, 130.2, 137.5, 159.8, 161.46, 161.52, and 164.8; 19F NMR (CDC13), --110.5; see also: ref. 13 a, b. 13. 1H NMR (CDCl3/DMSOd6), 3.17 (s, 4H, CH2CH2), 6.69--6.81, 7.08--7.28, and 7.60--7.63 (m, 8H, ArH) and 10.22 (s, 1H, ArOH); 13C NMR (CDCl3/DMSO-d6), 19.0, 28.4, 112.0, 114.8, 116.3, 119.2, 123.6, 125.4, 127.0, 128.8, 129.3, 130.0, 131.3, 138.1, 154.7, 158.7, and 161.2. 14. 1H NMR (CDCl3/DMSO-d6), 2.97 (s, 4H, CH2CH2), 6.87--6.91, 7.18--7.44, and 7.82--7.84 (m, 8H, ArH), and 9.85 (s, 1H, ArOH); 13CNMR (CDCl3/DMSO-d6), 18.5, 28.2, 110.6, 112.3, 116.6, 116.9, 123.6, 125.0, 127.1, 128.5, 128.8, 130.2, 130.3, 137.8, 157.7, 159.0, and 161.6. 15. 1H NMR (DMSO-d6), 2.98 (s, 4H, CH2CH2), 6.97 and 7.66 (d, d, 4H, ArH), 7.38--7.44, 7.84--7.87 (m, 4H, ArH), and 10.11 (s, 1H, ArOH); 13C NMR (DMSO-d6), 18.4, 28.3, 108.5, 115.9, 118.6, 123.6, 125.2, 127.0, 127.6, 128.8, 130.0, 137.7, 158.7, 158.9, and 162.1. 16. 1H NMR (DMSO-d6), 2.93 (s, 4H, CH2, 5.71 (s, 1H, NH2), 6.73 and 7.48 (d, d, 4H, ArH), 7.31--7.50 (m, 3H, ArH), and 7.81 (d, 1H, ArH); 13CNMR (DMSO-d6) 18.5, 28.4, 107.0, 113.7, 114.9, 123.5, 125.5, 126.9, 127.1, 128.7, 129.9, 137.7, 150.3, 158.7, and 162.9. 17. 1H NMR (CDCl), 2.97 (s, 6H, ArN(CH3 2), 3.00 (s [minor splitting], 4H CH2CH2), 6.73--6.78, 7.24--7.34, and 7.62--7.99 (m, 8H, ArH); 13C NMR (CDCl3), 19.4, 29.4, 40.4, 107.9, 112.0, 116.4, 124.4, 126.4, 127.1, 127.4, 128.6, 129.8, 137.7, 150.9, 159.6, and 162.3.
  • Infrared spectra (paraffin oil mulls) were obtained with a Nicolet Impact 410 FT-IR. ,
  • Silverstein , R. M. and Webster , F. X. , eds. 1998 . “ IR spectra for ethyl 4-aminobenzoate displayed absorptions at 3324, 3213 and 3640, cm-1 ” . In “Spectrometric Identification of Organic Compounds” , sixth edition , 102 New York : John Wiley and Sons, Inc., New York .
  • Proton and 13C NMR spectra were obtained with a Varian Associates Mercury Oxford 300 MHz, nuclear magnetic resonance spectrometer, and chemical shifts are recorded in δ ppm downfield from an internal tetramethylsilane (TMS) standard. ,
  • A 13C NMR spectra for ethyl 4-fluorobenzoate also displayed 13C-19F coupling with eleven lines for the molecule containing seven distinct carbon atoms. ,
  • A 19F NMR spectra for ethyl 4-fluorobenzoate displayed an absorption at δ - 106.7 ppm. ,
  • When 1-indanone oxime was dilithiated with excess LDA and condensed with aromatic esters, the attempted cyclization resulted in a C-acylated product or sometimes an incompletely characterized second product and not the expected indeno-isoxazole. ,
  • Rampey , M. E. , Hurst , D. R. , Sood , A. , Studer-Martinez , S. L. and Beam , C. F. 1999 . The extension of this methodology to non commercially available 8-hydroxy-1-tetralones and related compounds is currently under investigation . Synthetic Communications , 29 : 487
  • Studer-Martinez , S. L. , Rampey , M. E. , Halkyard , C. E. , Williams , A. R. , Angel , A. J. , Hurst , D. R. , Townsend , J. D. , Finefrock , A. E. and Beam , C. F. 1999 . Photochem. and Photobiol. , 70 : 176
  • See also: ref. 7f.
  • The condensation time differs due to the pendant group on the phenyl ring. The usual condensation time is approximately 1 hr for esters resulting in compounds such as 1, and 6--12; electron donating groups, such as methoxy, whether or not in a resonance position relative to the ester carboxyl group for products 2--5 are generally condensed longer, 1.25 - 1.5 hr; and esters with strong electron donating groups such as anilino or phenoxide for products 13--17 are condensed for an even longer period of time, 2 - 2.5 hr.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.