Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 45, 2015 - Issue 17
449
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Nano-Fe3O4–Supported, Hydrogensulfate Ionic Liquid–Catalyzed, One-Pot Synthesis of Polysubstituted Pyridines

, &
Pages 1964-1976 | Received 20 Dec 2014, Published online: 17 Jul 2015

REFERENCES

  • Habibi, A.; Seikhhosseini-Lori, E.; Shockravi, A. Synthesis of novel furo-pyran derivatives via reaction between an isocyanide and alkylidene-substituted Meldrum’s acid. Tetrahedron Lett. 2009, 50, 1075–1078.
  • Ma, N.; Jiang, B.; Zhang, G.; Tu, S.-J.; Wever, W.; Li, G. New multicomponent domino reactions (MDRs) in water: Highly chemo-, regio-, and stereoselective synthesis of spiro{[1,3]dioxanopyridine}-4,6-diones and pyrazolo[3,4-b] pyridines. Green Chem. 2010, 12, 1357–1361.
  • Yue, T.; Wang, M.-X.; Wang, D.-X.; Masson, G.; Zhu, J. Catalytic asymmetric Passerini-type reaction: Chiral aluminum−organophosphate-catalyzed enantioselective α-addition of isocyanides to aldehydes. J. Org. Chem. 2009, 74, 8396–8399.
  • Daştan, A.; Kulkarni, A.; Török, B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem. 2012, 14, 17–37.
  • Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312.
  • Wasserscheid, P.; Keim, W. Ionic liquids: New “solutions” for transition metal catalysis. Angew Angew. Chem. Int. Ed. 2000, 39, 3772–3789.
  • Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH, New York, 2008.
  • Dong, F.; Jun, L.; Xin-LiL, Z.; Zu-Liang, L. Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst. Catal. Lett. 2007, 116, 76–80.
  • Selvam, T.; Machoke, A.; Schwieger, W. Supported ionic liquids on non-porous and porous inorganic materials—A topical review. Appl. Catal. A: Gen. 2012, 445, 92–101.
  • Kim, Y.-H.; Shin, S.; Yoon, H.-J.; Kim, J. W.; Cho, J. K.; Lee, Y. S. Polymer-supported N-heterocyclic carbene-iron(III) catalyst and its application to dehydration of fructose into 5-hydroxymethyl-2-furfural. Catal. Commun. 2013, 40, 18–22.
  • Miao, J.; Wan, H.; Shao, Y.; Guan, G.; Xu, B. Acetalization of carbonyl compounds catalyzed by acidic ionic liquid immobilized on silica gel. J. Mol. Catal. A: Chem. 2011, 348, 77–82.
  • Jun, Y.-W.; Choi, J. S.; Cheon, J. Heterostructured magnetic nanoparticles: Their versatility and high performance capabilities. J. Chem. Commun. 2007, 12, 1203–1214.
  • Kaboudin, B.; Mostafalu, R.; Yokomatsu, T. Fe3O4 nanoparticle-supported Cu (ii)-β-cyclodextrin complex as a magnetically recoverable and reusable catalyst for the synthesis of symmetrical biaryls and 1,2,3-triazoles from aryl boronic acids. Green Chem. 2013, 15, 2266–2274.
  • Deng, Y.; Cai, Y.; Sun, Z.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y. Multifunctional mesoporous composite microspheres with well-designed nanostructure: A highly integrated catalyst system. J. Am. Chem. Soc. 2010, 132, 8466–8473.
  • Zhang, F.; Jin, J.; Zhong, X.; Li, S.; Niu, J.; Li, R.; Ma, J. Pd immobilized on amine-functionalized magnetite nanoparticles: A novel and highly active catalyst for hydrogenation and Heck reactions. Green Chem. 2011, 13, 1238–1243.
  • Pagoti, S.; Surana, S.; Chauhan, A.; Parasar, B.; Dash, J. Reduction of organic azides to amines using reusable Fe3O4 nanoparticles in aqueous medium. J. Catal. Sci. Technol. 2013, 3, 584–588.
  • Gawande, M. B.; Branco, P. S.; Varma, R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393.
  • Kim, B. Y.; Ahn, J. B.; Lee, H. W.; Kang, S. K.; Lee, J. H.; Shin, J. S.; Ahn, S. K.; Hong, C. I.; Yoon, S. S. Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur. J. Med. Chem. 2004, 39, 433–447.
  • Karki, R.; Thapa, P.; Kang, M. J.; Jeong, T. C.; Nam, J. M.; Kim, H-L.; Na, Y.; Cho, W. J.; Kwon, Y. Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines. Bio. Med. Chem. 2010, 18, 3066–3077.
  • Enyedy, I. J.; Sakamuri, S.; Zaman, W. A.; Johnson, K. M.; Wang, S. Pharmacophore-based discovery of substituted pyridines as novel dopamine transporter inhibitors. Bio. Med. Chem. Lett. 2003, 13, 513–517.
  • Jetti, R. K.; Nangia, A.; Xue, F.; Mak, T. C. Polar host–guest assembly mediated by halogen π interaction: Inclusion complexes of 2,4,6-tris(4-halophenoxy)-1,3,5-triazine (halo = chloro, bromo) with trihalobenzene (halo = bromo, iodo). Chem. Commun. 2001, 10, 919–920.
  • Wang, P.; Moorefield, C. N.; Newkome, G. R. Nanofabrication: Reversible self‐assembly of an imbedded hexameric metallomacrocycle within a macromolecular superstructure. Angew. Chem. Int. Ed. 2005, 44, 1679–1683.
  • Constable, E. C.; Dunphy, E. L.; Housecroft, C. E.; Kylberg, W.; Neuburger, M.; Schaffner, S.; Schofield, E. R.; Smith, C. B. Structural development of free or coordinated 4′‐(4‐pyridyl)‐2,2′:6′,2″‐terpyridine ligands through N‐alkylation: New strategies for metallamacrocycle formation. Chem.—Eur. J. 2006, 12, 4600–4610.
  • Andres, P. R.; Schubert, U. S. New functional polymers and materials based on 2,2′:6′,2″‐terpyridine metal complexes. Adv. Mater. 2004, 16, 1043–1068.
  • Lohmeijer, B. G.; Schubert, U. S. Supramolecular engineering with macromolecules: An alternative concept for block copolymers. Angew. Chem. Int. Ed. 2002, 41, 3825–3829.
  • Kroehnke, F. The specific synthesis of pyridines and oligopyridines. Synthesis 1976, 1976, 1–24.
  • Kröhnke, F.; Zecher, W.; Curtze, J.; Drechsler, D.; Pfleghar, K.; Schnalke, K.; Weis, W. Syntheses using the Michael adddition of phridinium salts. Angew. Chem. Int. Ed. 1962, 1, 626–632.
  • Smith, C. B.; Raston, C. L.; Sobolev, A. N. Poly(ethyleneglycol)(PEG): A versatile reaction medium in gaining access to 4′-(pyridyl)-terpyridines. Green Chem. 2005, 7, 650–654.
  • Smith, N. M.; Raston, C. L.; Smith, C. B.; Sobolev, A. N. PEG-mediated synthesis of amino-functionalised 2,4,6-triarylpyridines. Green Chem. 2007, 9, 1185–1190.
  • Schulze, B.; Friebe, C.; Hager, M. D.; Winter, A.; Hoogenboom, R.; Görls, H.; Schubert, U. S. 2,2′:6′,2″-Terpyridine meets 2,6-bis (1H-1,2,3-triazol-4-yl) pyridine: Tuning the electro-optical properties of ruthenium(II) complexes. Dalton Trans. 2009, 5, 787–794.
  • Adib, M.; Tahermansouri, H.; Koloogani, S. A.; Mohammadi, B.; Bijanzadeh, H. R. Kröhnke pyridines: An efficient solvent-free synthesis of 2,4,6-triarylpyridines. Tetrahedron Lett. 2006, 47, 5957–5960.
  • Nagarapu, L.; Peddiraju, R.; Apuri, S. HClO4–SiO2 as a novel and recyclable catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Catal. Commun. 2007, 8, 1973–1976.
  • Heravi, M. M.; Bakhtiari, K.; Daroogheha, Z.; Bamoharram, F. F. An efficient synthesis of 2,4,6-triarylpyridines catalyzed by heteropolyacid under solvent-free conditions. Catal. Commun. 2007, 8, 1991–1994.
  • Maleki, B.; Azarifar, D.; Veisi, H.; Hojati, S. F.; Salehabadi, H.; Yami, R. N. Wet 2,4,6-trichloro-1,3,5-triazine (TCT) as an efficient catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Chin. Chem. Lett. 2010, 21, 1346–1349.
  • Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Tavakoli-Hoseini, N.; Khashi, M. Highly efficient, one-pot, solvent-free synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst. Monatsh. Chem. 2010, 141, 867–870.
  • Tajbakhsh, M.; Farhang, M.; Hosseinzadeh, R.; Sarrafi, Y. Magnetic nano-Fe3O4-supported 1-benzyl-1,4-dihydronicotinamide (BNAH): Synthesis and application in the catalytic reduction of α,β-epoxy ketones. RSC Adv. 2014, 4, 23116–23124.
  • Bagheri, M.; Masteri-Farahani, M.; Ghorbani, M. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Magn. Magn. Mater. 2013, 327, 58–63.
  • Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiO2-supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. A: Chem. 2015, 398, 58–64.
  • Xu, H. J.; Wan, X.; Shen, Y.-Y.; Xu, S.; Feng, Y.-S. Magnetic nano-Fe3O4-supported 1-benzyl-1,4-dihydronicotinamide (BNAH): Synthesis and application in the catalytic reduction of α, β-epoxy ketones. Org. Lett. 2012, 14, 1210–1213.
  • Li, J.-H.; Hu, X.-C.; Xie, Y.-X. Nano-Fe3O4-supported biimidazole Cu(I) complex as a retrievable catalyst for the synthesis of imidazo[1,2-a]pyridines in aqueous medium. Tetrahedron Lett. 2006, 47, 9239–9243.
  • Li, J.; He, P.; Yu, C. DPTA-catalyzed one-pot regioselective synthesis of polysubstituted pyridines and 1,4-dihydropyridine. Tetrahedron Lett. 2012, 68, 4138–4144.
  • Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.
  • Chrobok, A.; Baj, S.; Pudło, W.; Jarzębski, A. Supported hydrogensulfate ionic liquid catalysis in Baeyer–Villiger reaction. Appl. Catal. A: Gen. 2009, 366, 22–28.
  • Li, J.; He, P.; Yu, C. DPTA-catalyzed one-pot regioselective synthesis of polysubstituted pyridines and 1,4-dihydropyridines. Tetrahedron. 2012, 68, 4138–4144.
  • Montazeri, N.; Mahjoob, S. Highly efficient and easy synthesis of 2,4,6-triarylpyridines catalyzed by pentafluorophenylammonium triflate (PFPAT) as a new recyclable solid acid catalyst in solvent-free conditions. Chin. Chem. Lett. 2012, 23, 419–422.
  • Shinde, P. V.; Labade, V. B.; Gujar, J. B.; Shingate, B. B.; Shingare, M. S. Bismuth triflate–catalyzed solvent-free synthesis of 2,4,6-triaryl pyridines and an unexpected selective acetalization of tetrazolo[1,5-a]-quinoline-4-carbaldehydes. Tetrahedron Lett. 2012, 53, 1523–1527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.