Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 45, 2015 - Issue 22
1,421
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Clay-Supported Cu(II) Catalyst: An Efficient, Heterogeneous, and Recyclable Catalyst for Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from Alloxan-Derived Terminal Alkyne and Substituted Azides Using Click Chemistry

, &
Pages 2608-2626 | Received 23 Jun 2015, Published online: 18 Nov 2015

REFERENCES

  • Meza-Avina, M. E.; Patel, M. K.; Croatt, M. P. Exploring the reactivity of 1,5-disubstituted sulfonyl-triazoles: Thermolysis and Rh(II)-catalyzed synthesis of a-sulfonyl nitriles. Tetrahedron 2013, 69, 7840–7846.
  • Zoumpoulakis, P.; Camoutsis, C.; Pairas, G.; Sokovic, M.; Glamoclija, J.; Potamitis, C.; Pitsas, A. Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles, and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents: Biological evaluation and conformational analysis studies. Bioorg. Med. Chem. 2012, 20, 1569–1583.
  • Wang, X. L.; Wan, K.; Zhou, C. H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem. 2010, 45, 4631–4639.
  • Kattimani, P. P.; Kamble, R. R.; Kariduraganavar, M. Y.; Dorababu, A.; Hunnur, R. K. Synthesis, characterization, and in vitro anticancer evaluation of novel 1,2,4-triazolin-3-one derivatives. Eur. J. Med. Chem. 2013, 62, 232–240.
  • Eswaran, S.; Adhikari, A. V.; Shetty, N. S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur. J. Med. Chem. 2009, 44, 4637–4647.
  • Kotaiah, Y.; Nagaraju, K.; Harikrishna, N.; Rao, C. V.; Yamini, L.; Vijjulatha, M. Synthesis, docking, and evaluation of antioxidant and antimicrobial activities of novel 1,2,4-triazolo[3,4-b][1,3,4]thiadiazol-6-yl)selenopheno[2,3-d]pyrimidines. Eur. J. Med. Chem. 2014, 75, 195–202.
  • Mangsang, W.; Sirion, U.; Saeeng, R. One-pot synthesis of O-glycosyl triazoles by O-glycosylation–click reaction. Carbohydr. Res. 2013, 375, 79–89.
  • (a) Huisgen, R. 1,3-Dipolar cycloadditions. Angew. Chem. 1963, 75, 604–637 (b) Huisgen, R. 1,3-Dipolar cycloadditions: Past and future. Angew. Chem. Int. Ed. Engl. 1963, 2, 565–632.
  • Bai, S. Q.; Jiang, L.; Sun, B.; Young, D. J.; Hor, T. S. A. Five Cu(I) and Zn(II) clusters and coordination polymers of 2-pyridyl-1,2,3-triazoles: Synthesis, structures, and luminescence properties. CrystEngComm. 2015, 17, 3305–3311.
  • Bai, S. Q.; Jiang, L.; Young, D. J.; Hor, T. S. A. Luminescent [Cu4I4] aggregates and [Cu3I3]-cyclic coordination polymers supported by quinolyltriazoles. Dalton Trans. 2015, 44, 6075–6081.
  • Bai, S. Q.; Jiang, L.; Zuo, J. L.; Hor, T. S. A. Hybrid NS ligands supported Cu(I)/(II) complexes for azide–alkyne cycloaddition reactions. Dalton Trans. 2013, 42, 11319–11326.
  • Bai, S. Q.; Koh, L. L.; Hor, T. S. A. Structures of copper complexes of the hybrid [SNS] ligand of bis(2-(benzylthio)ethyl)amine and facile catalytic formation of 1-benzyl-4-phenyl-1H-1,2,3-triazole through click reaction. Inorg. Chem. 2009, 48, 1207–1213.
  • Sodium azide was carefully handled using gloves during weighing and performing reaction in fuming chamber. However, sodium azide is relatively safe, especially in aqueous solution, unless acidified to form HN3, which is volatile and highly toxic. Moreover, the organic azide (i.e., alkyl azide), thus formed, was generated in situ. Due safety measures were taken to dispose of the waste. See Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
  • Praveena, K. S. S.; Ramarao, E. V. V. S.; Murthy, N. Y. S.; Akkenapally, S.; Kumar, C. G.; Kapavarapu, R.; Pal S. Design of new hybrid template by linking quinoline, triazol, and dihydroquinoline pharmacophoric groups: A greener approach to novel polyazaheterocycles as cytotoxic agents. Bioorg. Med. Chem. Lett. 2015, 25, 1057–1063.
  • Tao, C. Z.; Cui, X.; Liu, A. X.; Liu, L.; Guo, Q. X. Copper-catalyzed synthesis of aryl azides and 1-aryl-1,2,3-triazoles from boronic acids. Tetrahedron Lett. 2007, 48, 3525–3529.
  • Candelon, N.; Lastecoueres, D.; Diallo, A. K.; Aranzaes, J. R.; Astruc, D.; Vincent, J. M. A highly active and reusable copper(I)-tren catalyst for the “click” 1,3-dipolar cycloaddition of azides and alkynes. Chem. Commun. 2008, 741–743.
  • Moyano, E. L.; Lucero, P. L.; Eimer, G. A.; Herrero, E. R.; Yranzo, G. I. One-pot synthesis of 7H-dibenzo[b,d]azepin-7-one by heterogeneous flash vacuum pyrolysis with MCM-41 catalysts. Org. Lett. 2007, 9, 2179–2181.
  • Kim, H. J.; Jeon, Y. K.; Park, J. Il.; Shul, Y. G. Heterocycle-modified 12-tungstophosphoric acid as heterogeneouscatalyst for epoxidation of propylene with hydrogen peroxide. J. Mol. Catal. A: Chem. 2013, 378, 232–237.
  • Sarvari, M. H.; Etemad, S. Nanosized zinc oxide as a catalyst for the rapid and green synthesis of β-phosphono malonates. Tetrahedron Lett. 2008, 64, 5519–5523.
  • Miao, T.; Wang, L. Regioselective synthesis of 1,2,3-triazoles by use of a silica-supported copper(I) catalyst. Synthesis 2008, 3, 363–368.
  • Chassaing, S.; Kumarraja, M.; Sido, A. S. S.; Pale, P.; Sommer, J. Click chemistry in CuI-zeolites: The Huisgen [3 + 2]-cycloaddition. Org. Lett. 2007, 9, 883–886.
  • Liu, D.; Gui, J.; Sun, Z. Adsorption structures of heterocyclic nitrogen compounds over Cu(I)Y zeolite: A first principle study on mechanism of the denitrogenation and the effect of nitrogen compounds on adsorptive desulfurization. J. Mol. Catal. A: Chem. 2008, 291, 17–21.
  • Lipshutz, B. H.; Taft, B. R. Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew. Chem., Int. Ed. 2006, 45, 8235–8238.
  • Mohammed, S.; Padala, A. K.; Dar, B. A.; Singh, B.; Sreedhar, B.; Vishwakarma, R. A.; Bharate, S. B. Recyclable clay-supported Cu(II)-catalyzed tandem one-pot synthesis of 1-aryl-1,2,3-triazoles. Tetrahedron 2012, 68, 8156–8162.
  • Sharma, P.; Kumar, A.; Rane, N.; Gurram, V. K. Hetero Diels–Alder reaction: A novel strategy to regioselective synthesis of pyrimido[4,5-d]pyrimidine analogues from Biginelli derivative. Tetrahedron 2005, 61, 4237–4248.
  • Sharma, P.; Kumar, A.; Sharma, S.; Rane, N. Studies on synthesis and evaluation of quantitative structure–activity relationship of 5-[(30-chloro-40,40-disubstituted-2-oxoazetidinyl)(N-nitro)amino]-6-hydroxy-3-alkyl/aryl[1,3]-azaphospholo[1,5-a]pyridin-1-yl-phosphorus dichlorides. Bioorg. Med. Chem. Lett. 2005, 5, 937–943.
  • Sharma, P.; Kumar, A.; Upadhyay, S.; Sahu, V.; Singh, J. Synthesis and QSAR modeling of 2-acetyl-2-ethoxycarbonyl-1-[4(4′-arylazo)-phenyl]-N,N-dimethylaminophenyl aziridines as potential antibacterial agents. Eur. J. Med. Chem. 2008, 16, 251–259.
  • Kumar, A.; Sharma, P.; Gurram, V. K.; Rane, N. Studies on synthesis and evaluation of quantitative structure–activity relationship of 10-methyl-6-oxo-5-arylazo-6,7-dihydro-5H-[1,3]azaphospholo[1,5-d][1,4]benzodiazepin-2-phospha-3-ethoxycarbonyl-1-phosphorus dichlorides. Bioorg. Med. Chem. Lett. 2006, 16, 2484–2491.
  • Sharma, P.; Rane, N.; Gurram, V. K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2004, 14, 4185.
  • Sharma, P.; Kumar, A.; Sahu, V. Theoretical evaluation of global and local electrophilicity patterns to characterize hetero-Diels–Alder cycloaddition of three-membered 2H-azirine ring system. J. Phys. Chem. A 2010, 114, 1032–1038.
  • Wu, J.; Yu, W.; Fu, L.; He, W.; Wang, Y.; Chai, B.; Song, C.; Chang, J. Design, synthesis, and biological evaluation of new 20-deoxy-20-fluoro-40-triazole cytidine nucleosides as potent antiviral agents. Eur. J. Med. Chem. 2013, 63, 739–745.
  • Leoneti, V. A.; Campo, V. L.; Gomes, A. S.; Field, R. A.; Carvalho, I. Application of copper(I)-catalysed azide/alkyne cycloaddition (CuAAC) “click chemistry” in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron 2010, 66, 9475–9492.
  • Kannan, V.; Sreekumar, K. Clay-supported titanium catalyst for the solvent-free synthesis of tetrasubstituted imidazoles and benzimidazoles. J. Mol. Catal. A: Chem. 2013, 376, 34–39.
  • Sharma, B.; Siddiqui, Md. S.; Kumar, S. S.; Ram, G.; Chaudhary, M. Liver protective effects of aqueous extract of Syzygium cumini in Swiss albino mice on alloxan induced diabetes mellitus. J. Pharm. Res. 2013, 6, 853–858.
  • (a) Garden, S. J.; Torres, J. C.; da Silva, J. F. M.; Pinto, A. C. A convenient methodology for the N-alkylation of isatin compounds. Synth. Commun. 1998, 28, 1679; (b) Bouhfid, R.; Joly, N.; Massoui, M.; Cecchelli, R.; Lequart, V.; Martin, P.; Essassi, E. M. An efficient synthesis of new spiro[indolo-3(1H),2′(3′H)-oxadiazolyl] and 1-(triazol-4-ylmethyl)isatin derivatives. Heterocycles 2005, 65, 2949.
  • Luo, M. F.; Fang, P.; He, M.; Xie, Y. L. In situ XRD, raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J. Mol. Catal. A: Chem. 2005, 239, 243–248.
  • Zhou, R. X.; Yu, T. M.; Jiang, X. Y.; Chen, F.; Zheng, X. M. Temperature-programmed reduction and temperature-programmed desorption studies of CuO/ZrO2 catalysts. Appl. Surf. Sci. 1999, 148, 263–270.
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective ligation of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599.
  • Takanabe, K.; Uzawa, T.; Wang, X.; Maeda, K.; Katayama, M.; Kubota, J.; Kudo, A.; Domen, K. Enhancement of photocatalytic activity of zinc-germanium oxynitridesolid solution for overall water splitting under visible irradiation. Dalton Trans. 2009, 10055–10062.
  • Zhao, F. Z.; Zeng, P. H.; Ji, S. F.; Yang, X.; Li, C. Y. Catalytic combustion of toluene over CuxCo1x/Al2O3/FeCrAl monolithic catalysts. Acta Phys. Chim. Sin. 2010, 26, 3285–3290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.