Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 46, 2016 - Issue 8
2,524
Views
85
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Synthetic chemistry of pyrimidines and fused pyrimidines: A review

&
Pages 645-672 | Received 31 Jan 2016, Published online: 05 May 2016

References

  • Mansour, A. K.; Eid, M. M.; Khalil, N. S. A. M. Synthesis and reactions of some new heterocyclic carbohydrazides and related compounds as potential anticancer agents. Molecules 2003, 8, 744–755.
  • Diaz-Gavilan, M.; Gomez-Vidal, J. A.; Rodriguez-Serrano, F.; Marchal, J. A.; Caba, O.; Aranega, A.; Gallo, M. A.; Espinosa, A.; Campos, J. M. Anticancer activity of (1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl)-pyrimidines and -purines against the MCF-7 cell line: Preliminary DNA microarray studies. Bioorg. Med. Chem. Lett. 2008, 18, 1457–1460.
  • Dinakaran, S. V.; Bhargavi, B.; Srinivasan, K. K. Fused pyrimidines: The heterocycle of diverse biological and pharmacological significance. Pharm. Chem. 2012, 4, 255–265.
  • Aboul El-Ella, D. A.; Ghorab, M. M.; Noaman, E.; Heiba, H. I.; Khalil, A. I. Molecular modeling study and synthesis of novel pyrrolo[2,3-d]pyrimidines and pyrrolotriazolopyrimidines of expected antitumor and radio protective activities. Bioorg. Med. Chem. Lett. 2008, 16, 2391–2402.
  • Gready, J. E.; McKinlay, C.; Gebauer, M. G. Synthesis of quaternised 2-aminopyrimido[4,5-d]pyrimidin-4(3H)-ones and their biological activity with dihydrofolate reductase. Eur. J. Med. Chem. 2003, 38, 719–728.
  • Selvam, T. P.; James, C. R.; Dniandev, P. V.; Valzita, S. K. A mini review of pyrimidine and fused pyrimidine marketed drugs. Res. Pharm. 2102, 2, 1–9.
  • Singh, K.; Wan, B.; Franzblau, S.; Chibale, K.; Balzarini, J. Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines: In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity. Eur. J. Med. Chem. 2011, 46, 2290–2294.
  • Lauria, A.; Patella, C.; Abbate, I.; Almerico, A. M. Lead optimization through VLAK protocol: New annulated pyrrolo-pyrimidine derivatives as antitumor agent. Eur. J. Med. Chem. 2012, 55, 375–383.
  • Roopan, S. M.; Khan, F. N.; Mandal, B. K. Fe nanoparticles mediated C-N bond forming reaction: Regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)ones. Tetrahedron Lett. 2010, 51, 2309–2311.
  • Bharathi, A.; Roopan, S. M.; Vasavi, C. S.; Gayathri, G. A.; Gayathri, M. In silico molecular docking and in vitro antidiabetic studies of dihydropyrimido[4,5-a]acridin-2-amines. BioMed Res. Inter. 2014, 971569, 1–10.
  • Zhungietu, G. I.; Dorofeenko, G. N. Progress in the field of the chemistry of steroidal heterocycles. Russ. Chem. Rev. 1967, 36, 24–37.
  • Kakati, D.; Sarma, R. K.; Saikia, R.; Barua, N. C.; Sarma, J. C. Rapid microwave-assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones. Steroids 2013, 78, 321–326.
  • Shahidi, N. T. A review of the chemistry, biological action, and clinical applications of anabolic androgenic steroids. Clin. Ther. 2001, 23, 1355–1390.
  • Li, Y.; Dias, J. R. Dimeric and oligiomeric steroids. Chem. Rev. 1997, 97, 283–304.
  • Nahar, L.; Sarker, S. D.; Turner, A. B. A review on synthetic and natural steroid dimers: 1997–2006. Curr. Med. Chem. 2007, 14, 1349–1370.
  • Moser, B. R. Review of cytotoxic cephalostatins and ritterazines: Isolation and synthesis. J. Nat. Prod. 2008, 71, 487–491.
  • Kou, Y.; Cheun, Y.; Koag, M. C.; Lee, S. Synthesis of 14,15-dehydro-ritterazine Y via reductive and oxidative functionalizations of hecogenin acetate. Steroids 2013, 78, 304–311.
  • Huang, L. H. Synthesis of novel D-ring fused 7-aryl-androstano[17,16-d][1,2,4] triazolo[1,5-a]pyrimidines. Steroids 2012, 77, 367–374.
  • Huang, L. H.; Zheng, Y. F.; Lu, Y. Z.; Song, C. J.; Wang, Y. G.; Yu, B.; Liu, H. M. Synthesis and biological evaluation of novel steroidal[17,16-d][1,2,4]triazolo [1,5-a]pyrimidines. Steroids 2012, 77, 710–715.
  • Yu, B.; Shi, X. J.; Zheng, Y. F.; Fang, Y.; Zhang, E.; Yu, D. Q.; Liu, H. M. A novel [1,2,4] triazolo [1,5-a] pyrimidine-based phenyl-linked steroid dimer: Synthesis and its cytotoxic activity. Eur. J. Med. Chem. 2013, 69, 323–330.
  • Dimroth, O. Ueber intramolekulare Umlagerungen. Umlagerungen in der Reihe des 1,2,3-Triazols. Justus Liebigs Ann. Chem. 1909, 364, 183–226.
  • Lauria, A.; Patella, C.; Abbate, I.; Almerico, A. M. An unexpected Dimroth rearrangement leading to annelated thieno[3,2-d][1,2,3]triazolo[1,5-a]pyrimidines with potent antitumor activity. Eur. J. Med. Chem. 2013, 65, 381–388.
  • Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators: A comparison of ab initio, semiempirical, and x-ray crystallographic studies. Tetrahedron 2010, 53, 2803–2816.
  • Determann, R.; Dreher, J.; Baumann, K.; Preu, L.; Jones, P. G.; Totzke, F.; Schachtele, C.; Kubbutat, M. H. G.; Kunich, C. 2-Anilino-4-(benzimidazol-2-yl)pyrimidines: A multikinase inhibitor scaffold with antiproliferative activity toward cancer cell lines. Eur. J. Med. Chem. 2012, 53, 254–263.
  • Lukasik, P. M.; Elabar, S.; Lam, F.; Shao, H.; Liu, X.; Abbas, A. Y.; Wang, S. Synthesis and biological evaluation of imidazo[4,5-b]pyridine and 4-heteroaryl-pyrimidine derivatives as anti-cancer agents. Eur. J. Med. Chem. 2012, 57, 311–322.
  • Salwa, F. M.; Eman, M. F.; El-Galil, A. E. A.; Abd-El-Shafy, D. N. Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine, and thiazolopyrimidine derivatives. Eur. J. Med. Chem. 2010, 45, 1494–1501.
  • Nagarapu, L.; Vanaparthi, S.; Bantu, R.; Kumar, C. G. Synthesis of novel benzo[4,5]thiazolo[1,2-a]pyrimidine-3-carboxylate derivatives and biological evaluation as potential anticancer agents. Eur. J. Med. Chem. 2013, 69, 817–822.
  • Katada, J.; Iijima, K.; Muramatsu, M.; Takami, M.; Yasuda, E.; Hayashi, M.; Hattori, M; Hayashi, Y. Cytotoxic effects of NSL-1406, a new thienopyrimidine derivative, on leukocytes and osteoclasts. Bioorg. Med. Chem. Lett. 1999, 9, 797–802.
  • Gangjee, A.; Qiu, Y.; Kisliuk, R. L. Synthesis classical and nonclassical 2-amino-4-oxo-6-benzyl-thieno[2,3-d]pyrimidines as potential thymidylate synthase inhibitors. J. Heterocycl. Chem. 2004, 41, 941–946.
  • Dai, Y.; Guo, Y.; Frey, R. R.; Ji, Z.; Curtin, M. L.; Ahmed, A. A.; Albert, D. H.; Arnold, L.; Arries, S. S.; Barlozzari, T.; Bauch, J. L.; Bouska, J. J.; Bousquet, P. F.; Cunha, G. A.; Glaser, K. B.; Guo, J.; Li, J.; Marcotte, P. A.; Marsh, K. C.; Moskey, M. D.; Please, L. J.; Stewart, K. D.; Stoll, V. S.; Tapang, P.; Wishart, N.; Davidsen, S. K.; Michaelides, M. R. Thienopyrimidine ureas as novel and potent multitargeted receptor tyrosine kinase inhibitors. J. Med. Chem. 2005, 48, 6066–6083.
  • Kandeel, M. M.; Mounir, A. A.; Kassab, A. E. Synthesis of effective anticancer thieno[2,3-d]pyrimidine-4-ones and thieno [3,2-e]triazolo[3,2-c]pyrimidines. Int. J. Pharm. Pharm. Sci. 2012, 4, 438–448.
  • Jennings, L. D.; Kincaid, S. L.; Wang, Y. D.; Krishnamurthy, G.; Beyer, C. F.; McGinnis, J. P.; Miranda, M.; Discafani, C. M.; Rabindran, S. K. Parallel synthesis and biological evaluation of 5,6,7,8-tetrahydrobenzothieno[2,3-d]pyrimidin-4(3H)-one cytotoxic agents selective for p21-deficient cells. Bioorg. Med. Chem. Lett. 2005, 15, 4731–4735.
  • Messinger, J.; Hirvela, L.; Husen, B.; Kangas, L.; Koskimies, P.; Pentikainen, O.; Saarenketo, P.; Thole, H. New inhibitors of 17-beta-hydroxysteroid dehydrogenase type 1. Mol. Cell. Endocrinol. 2006, 248, 192–198.
  • Amr, A. E.; Mohamed, A. M.; Mohamed, S. F.; Abdel-Hafez, N. A.; Hammam, A. G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem. 2006, 14, 5481–5488.
  • Horiuchi, T.; Chiba, J.; Uoto, K.; Soga, T. Discovery of novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of cyclin D1-CDK4: Synthesis, biological evaluation, and structure–activity relationships. Bioorg. Med. Chem. Lett. 2009, 19, 305–308.
  • Horiuchi, T.; Nagata, M.; Kitagawa, M.; Akahane, K.; Uoto, K. Discovery of novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of cyclin D1-CDK4: Synthesis, biological evaluation, and structure–activity relationships. Bioorg. Med. Chem. 2009, 17, 7850–7860.
  • Su, D. S.; Lim, J. J.; Tinney, E.; Wan, B. L.; Young, M. B.; Anderson, K. D.; Rudd, D.; Munshi, V.; Bahnck, C.; Felock, P. J.; Lu, M.; Lai, M. T.; Touch, S.; Moyer, G.; DiStefano, D. J.; Flynn, J. A.; Liang, Y.; Sanchez, R.; Prasad, S.; Yana, Y.; Perlow-Poehnelt, R.; Torrent, M.; Miller, M.; Vacca, J. P.; Williams, T. M.; Anthony, N. J. Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants. Bioorg. Med. Chem. Lett. 2009, 19, 5119–5123.
  • Kemnitzer, W.; Sirisoma, N.; May, C.; Tseng, B.; Drewe, J.; Cai, S. X. Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers. Bioorg. Med. Chem. Lett. 2009, 19, 3536–3540.
  • Pedeboscq, S.; Gravier, D.; Casadebaig, F.; Hou, G.; Gissot, A.; Giorgi, F. D.; Ichas, F.; Cambar, J.; Pometan, J.-P. Synthesis and study of antiproliferative activity of novel thienopyrimidines on glioblastoma cells. Eur. J. Med. Chem. 2010, 45, 2473–2479.
  • Aponte, J. C.; Vaisberg, A. J.; Castillo, D.; Gonzalez, G.; Estevez, Y.; Arevalo, J.; Quiliano, M.; Zimic, M.; Verastegui, M.; Malaga, E.; Gilman, R. H.; Bustamante, J. M.; Tarleton, R. L.; Wang, Y.; Franzblau, S. G.; Pauli, G. F.; Sauvain, M.; Hammond, G. B. Trypanoside, anti-tuberculosis, leishmanicidal, and cytotoxic activities of tetrahydrobenzothienopyrimidines. Bioorg. Med. Chem. Lett. 2010, 18, 2880–2886.
  • Wakeling, A. E.; Guy, S. P.; Woodburn, J. R.; Ashton, S. E.; Curry, B. J.; Barker, A. J.; Gibson, S. H. ZD1839 (Iressa): An orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer. Res. 2002, 62, 5749–5754.
  • Moyer, J. D.; Barbacci, E. G.; Iwata, K. K.; Arnold, L.; Boman, B.; Cunningham, A.; DiOrio, C.; Doty, J.; Morin, M. J.; Moyer, M. P.; Neveu, M.; Pollack, V. A.; Pustilnik, L. R.; Reynolds, M. M.; Sloan, D.; Theleman, A.; Miller, P. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer. Res. 1997, 57, 4838–4848.
  • DeAngelo, D. J.; Stone, R. M.; Heaney, M. L.; Nimer, S. D.; Paquette, R. L.; Klisovic, R. B.; Caligiuri, M. A.; Cooper, M. R.; Lecerf, J.-M.; Karol, M. D.; Sheng, S.; Holford, N.; Curtin, P. T.; Druker, B. J.; Heinrich, M. C. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: Safety, pharmacokinetics, and pharmacodynamics. Blood 2006, 108, 3674–3681.
  • Wang, Y. D.; Johnson, S.; Powell, D.; McGinnis, J. P.; Miranda, M.; Rabindran, S. K. Inhibition of tumor cell proliferation by thieno[2,3-d]pyrimidin-4(1H)-one-based analogs. Bioorg. Med. Chem. Lett. 2005, 15, 3763–3766.
  • Kassab, A. E.; Gedawy, E. M. Synthesis and anticancer activity of novel 2-pyridyl hexahyrocyclooctathieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem. 2013, 63, 224–230.
  • Ram, J.; Berghe, D. A. V.; Vlietinck, A. J. Pyrido[2,3-d]pyrimidines and pyrido[2,3-d;5-d]dipyrimidines as potential chemotherapeutic agents, VIII. J. Heterocycl. Chem. 1988, 28, 217–219.
  • Piper, J. R.; McCaleb, G. S.; Montgomery, J. A.; Kisliuk, R. L.; Gaumont, Y.; Sirotnak, F. M. Syntheses and antifolate activity of 5-methyl-5-deaza analogues of aminopterin, methotrexate, folic acid, and N10-methylfolic acid. J. Med. Chem. 1986, 29, 1080–1087.
  • Robins, R. K.; Hitchings, G. H. Studies on condensed pyrimidine systems, XIX: A new synthesis of pyrido [2,3-d] pyrimidines: The condensation of 1,3-diketones and 3-ketoaldehydes with 4-aminopyrimidines. J. Am. Chem. Soc. 1958, 80, 3449–3457.
  • Hasan, M. F.; Madkour, A. M.; Saleem, I.; Rahman, J. M. A.; Mohammed, E. A. Z. Reactions of 5-(p-anisyl)-2-methyl-7-(p-tolyl)-4H-pyrido[2,3-d][1,3]oxazin-4-one. Heterocycles 1994, 38, 57–69.
  • Nasr, M. N.; Gineinah, M. M. Pyrido[2,3-d]pyrimidines and pyrimido[5,4:5,6]pyrido[2,3-d]pyrimidines as new antiviral agents: Synthesis and biological activity. Archiv. Pharm. 2002, 335, 289–295.
  • Kurumurthy, C.; Sambasova Rao, P.; Veera Swamy, B.; Santhose Kumar, G.; Shanthan Rao, P.; Narsaiah, B.; Velatooru, L. R.; Pamanji, R.; Venkateswara Rao, J. Synthesis of novel alkyltriazole tagged pyrido[2,3-d]pyrimidine derivatives and their anticancer activity. Eur. J. Med. Chem. 2011, 46, 3462–3468.
  • Girasolo, M. A.; Di Salvo, C.; Schillaci, D.; Barone, G.; Silvestri, A.; Ruisi, G. Synthesis, characterization, and in vitro antimicrobial activity of organotin(IV) complexes with triazolo-pyrimidine ligands containing exocyclic oxygen atoms. J. Organomet. Chem. 2005, 690, 4773–4783.
  • Salas, J. M.; Romero, M. A.; Sánchez, M. P.; Quiros. M. Metal complexes of [1,2,4]triazolo-[1,5-a]pyrimidine derivatives. Coord. Chem. Rev. 1999, 193–195, 1119–1142.
  • Beyer, C. F.; Zhang, N.; Hernandez, R.; Vitale, D.; Lucas, J.; Nguyen, T.; Discafani, C.; Ayral-Kaloustian, S.; Gibbbons, J. J. TTI-237: A novel microtubule-active compound with in vivo antitumor activity. Cancer. Res. 2008, 68, 2292–2300.
  • Huang, L. H.; Zheng, Y. F.; Lu, Y. Z.; Song, C. J.; Wang, Y. G.; Yu, B.; Liu, H. M. Synthesis and biological evaluation of novel steroidal[17,16-d][1,2,4]triazolo[1,5-a]pyrimidines. Steroids 2012, 77, 710–715.
  • Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J. C.; Doble, A.; Doerflinger, G.; Huu, D. C.; Donat, M. H.; Duchesne, J. M.; Ganil, P.; Geremy, C.; Honore, E.; Just, B.; Kerphirique, R.; Gontier, S.; Hubert, P.; Laduron, P. M.; Blevec, J. L.; Meunier, M.; Miquet, J. M.; Nemecek, C.; Pasquet, M.; Piot, O.; Pratt, J.; Rataud, J.; Reibaud, M.; Stutzmann, J. M.; Mignani, S. Riluzole series: Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J. Med. Chem. 1999, 42, 2828–2843.
  • Bradshaw, T. D.; Shi, D. F.; Schultz, R. J.; Paull, K. D.; Kelland, L.; Wilson, A.; Garner, C.; Fiebig, H. H.; Wrigley, S.; Stevens, M. F. Influence of 2-(4-aminophenyl)benzothiazoles on growth of human ovarian carcinoma cells in vitro and in vivo. Br. J. Cancer. 1998, 78, 421–429.
  • Fahmy, H. T.; Rostom, S. A.; Saudi, M. N.; Zjawiony, J. K.; Robins, D. J. Synthesis and in vitro evaluation of the anticancer activity of novel fluorinated thiazolo[4, 5-d]pyrimidines. Archiv. Pharm. 2003, 336, 216–225.
  • Pathak, U. S.; Gandhi, N. V.; Singh, S.; Jain, K. S. Synthesis of 1,2,4-triazolo-4,3-thieno-3,2-pyrimidine-5-ones. Indian. J. Chem. 1992, 31, 223–229.
  • Waghmare, G. S.; Chidrawar, A. B.; Bhosale, V. N.; Shendrkar, G. R.; Kuberkar, S. V. Synthesis and in-vitro anticancer activity of 3-cyano-6,9-dimethyl-4-imino 2-methylthio 4H-pyrimido [2,1-b] [1,3] benzothiazole and its 2-substituted derivatives. J. Pharm. Res. 2013, 7, 823–827.
  • Hurley, L. H. Pyrrolo(1,4)benzodiazepine antitumor antibiotics: Comparative aspects of anthramycin, tomaymycin, and sibiromycin. J. Antibiot. 1977, 30, 349–370.
  • Aoki, H.; Miyairi, N.; Ajisaka, M.; Sakai, H. Dextrochrysin, a new antibiotic. J. Antibiot. 1969, 22, 201–206.
  • Sirisoma, N.; Kasibhatla, S.; Nguyen, B.; Pervin, A.; Wang, Y.; Claassen, G.; Tseng, B.; Drewe, J.; Cai, S. X. Discovery of substituted 4-anilino-2-(2-pyridyl)pyrimidines as a new series of apoptosis inducers using a cell and caspase-based high-throughput screening assay, part 1: Structure–activity relationships of the 4-anilino group. Bioorg. Med. Chem. 2006, 14, 7761–7773.
  • Sirisoma, N.; Kasibhatla, S.; Nguyen, B.; Pervin, A.; Wang, Y.; Claassen, G.; Tseng. B.; Drewe, J.; Cai, S. X. Discovery of substituted 4-anilino-2-arylpyrimidines as a new series of apoptosis inducers using a cell and caspase-based high throughput screening assay, 2: Structure–activity relationships of the 2-aryl group. Bioorg. Med. Chem. Lett. 2009, 19, 2305–2309.
  • Wang, J. J.; Shen, Y. K.; Hu, W. P.; Hsieh, M. C.; Lin, F. L.; Hsu, M. K.; Hsu, M. H. Design, synthesis, and biological evaluation of pyrrolo[2,1-c][1,4]benzodiazepine and indole conjugates as anticancer agents. J. Med. Chem. 2006, 49, 1442–1449.
  • Kamal, A.; Kamal, A.; Bharathi E. V.; Ramaiah, M. J.; Dastagiri, D.; Reddy, J. S.; Viswanath, A.; Sultana, F.; Pushpavalli, S. N.; Pal-Bhadra, M.; Srivastava, H. K.; Sastry, G. N.; Juvekar, A.; Sen, S.; Zingde, S. Quinazolinone linked pyrrolo[2,1-c][1,4]benzodiazepine (PBD) conjugates: Design, synthesis, and biological evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett. 2006, 18, 526–542.
  • Kamal, A.; Reddy, J. S.; Ramaiah, M. J.; Bharathi, E. V.; Dastagiri, D.; Reddy, M. K.; Pushpavalli, S. N.; Pal-Bhadra, M. Synthesis and biological evaluation of anilino substituted pyrimidine linked pyrrolobenzodiazepines as potential anticancer agents. Bioorg. Med. Chem. Lett. 2010, 20, 5232–5236.
  • Ghorab, M. M.; Ragab, F. A.; Heiba, H. I.; Youssef, H. A.; El-Gazzar, M. G. Synthesis of novel pyrrole and pyrrolo[2,3-d]pyrimidine derivatives bearing sulfonamide moiety for evaluation as anticancer and radiosensitizing agents. Bioorg. Med. Chem. Lett. 2010, 20, 6316–6320.
  • Ghorab, M. M.; Ragab, F. A.; Heiba, H. I.; Youssef, H. A.; El-Gazzar, M. G. In vitro anticancer screening and radiosensitizing evaluation of some new quinolines and pyrimido[4,5-b]quinolines bearing a sulfonamide moiety. Eur. J. Med. Chem. 2010, 45, 3677–3684.
  • Supuran, C. T.; Scozzafava, A. Carbonic anhydrase inhibitors. Curr. Med. Chem. 2001, 1, 61–97.
  • Lobb, K. L.; Hipskind, P. A.; Aikins, J. A.; Alvarez, E.; Cheung Y. Y.; Considine, E. L.; Dios, A. D.; Durst, G. L.; Ferritto, R.; Grossman, C. S.; Giera, D. D.; Hollister, B. A.; Huang, Z.; Iversen, P. W.; Law, K. L..; Li, T.; Lin, H. S.; Lopez, B.; Lopez, J. E.; Cabrejas, L. M.; McCann, D. J.; Molero, V.; Reilly, J. E.; Richett, M. E.; Shih, C.; Teicher, B.; Wikel, J. H.; White, W. T.; Mader, M. M. J. Med. Chem. 2004, 47, 5367–5380.
  • Medina, J. C.; Roche, D.; Shan, B.; Learned, R. M.; Frankmoelle, W. P.; Clark, D. L.; Rosen, T.; Jaen, J. C. Novel halogenated sulfonamides inhibit the growth of multidrug resistant MCF-7/ADR cancer cells. Bioorg. Med. Chem. Lett. 1999, 9, 1843–1836.
  • Drews, J. Drug discovery: A historical perspective. J. Science 2000, 287, 1960–1964.
  • Boyd, A. E. Sulfonylurea receptors, ion channels, and fruit flies. Diabetes 1988, 37, 847–850.
  • Maren, T. H. Relation between structure and biological activity of sulfonamides. Annu. Rev. Pharmacol. Toxicol. 1976, 16, 309–327.
  • Supuran, C. T.; Casini, A.; Scozzafava, A.; Mastrolorenzo, A. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr. Cancer. Drug. Targets 2002, 2, 55–75.
  • Deininger, M.; Buchdunger, E.; Druker, B. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. J. Blood 2005, 102, 2640–2653.
  • Gorre, M. E. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001, 293, 876–880.
  • Kamal, A.; Dastagiri, D.; Ramaiah, M. J.; Reddy, J. S.; Bharathi, E. V.; Reddy, M. K.; Sagar, M. V.; Reddy, T. L.; Pushpavalli, S. N.; Pal-Bhadra, M. Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents. Bioorg. Med. Chem. Lett. 2011, 46, 5817–5824.
  • Ma, L. Y.; Wang, B.; Pang, L. P.; Zhang, M.; Wang S. Q.; Zheng, Y. C.; Shao, K. P.; Xue, D. Q.; Liu, H. M. Design and synthesis of novel 1,2,3-triazole–pyrimidine–urea hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett. 2015, 25, 1124–1128.
  • Liu, S. J.; Zhou, R.; Yue, H. K.; Shi, L. X. A green method for synthesis of 5H-thiazolo[3,2-a]pyrimidine derivatives catalyst by [Hnmp]HSO4 ionic liquid. Adv. Mat. Res. 2014, 884–885, 3–6.
  • Shirini, F.; Langarudi, M. S. N.; Seddighi, M.; Jolodar, O. G. Bi-SO3H functionalized ionic liquid based on DABCO as a mild and efficient catalyst for the synthesis of 1,8-dioxo-octahydro-xanthene and 5-arylmethylene-pyrimidine-2,4,6-trione derivatives. Res. Chem. Intermed. 2015, 41, 8483–8497.
  • Safari, J.; Zarnegar, Z. Bronsted acidic ionic liquid based magnetic nanoparticles: A new promoter for the Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. New J. Chem. 2015, 38, 358–365.
  • Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Azad, M. Dual acidic ionic liquid immobilized on α -Fe2O3–MCM-41 magnetic mesoporous materials as the hybrid acidic nanocatalyst for the synthesis of pyrimido[4,5-d]pyrimidine derivatives. Catal. Lett. 2014, 144, 1772–1783.
  • Karimi, N.; Yahyavi, H.; Mamani, L.; Madhavi, M.; Foroumadi, A.; Shafiee, A. Efficient and ecofriendly route for the solvent-free synthesis of 4-alkoxy-5 h-chromen[2,3-d]pyrimidines using phosphonic acid functionalized KIT-6 confined ionic liquid as recoverable catalyst. Synth. Commun. 2014, 44, 2826–2837.
  • Gupta, R.; Chaudhary, R. P. Efficient ionic liquid–catalysed synthesis and antimicrobial studies of 4,6-diaryl- and 4,5-fused pyrimidine-2-thiones. J. Chem. Res. 2012, 36, 718–721.
  • Yu, J. Green synthesis of pyrano[2,3-d]pyrimidine derivatives in ionic liquids. Synth. Commun. 2005, 35, 3133–3140.
  • Du, B. X.; Li, Y. L.; Wang, X. S.; Shi, D. Q. Ionic liquids as an efficient and recyclable reaction medium for the synthesis of pyrido[2,3-d]pyrimidines. J. Hetercycl. Chem. 2013, 50, 534–538.
  • Sigh, R.; Kumari, K.; Dubey, M.; Vishvakarma, V. K.; Mehrotra, G. K.; Pandey, N. D.; Chandra, R. Ionic liquid–catalyzed synthesis of 7-phenyl-1,4,6,7-tetrahydro-thiazolo[5,4-d]pyrimidine-2,5-diones. C. R. Chim. 2012, 15, 504–510.
  • Kang, L. Q.; Jin, D. Y.; Cai, Y. Q. Silica-supported ionic liquid Si-[SbSipim][PF6], an efficient catalyst for the synthesis of 3,4-dihydropyrimidine-2-(1H)-ones. Synth. Commun. 2013, 43, 1896–1901.
  • Shadjou, N.; Hasanzadeh, M. Amino functionalized mesoporous silica decorated with iron oxide nanoparticles as a magnetically recoverable nanoreactor for the synthesis of a new series of 2,4-diphenylpyrido[4,3-d]pyrimidines. RSC Adv. 2014, 4, 18117–18126.
  • Abdolmohammadi, S.; Afsharpour, M. An operationally simple green procedure for the synthesis of dihydropyrimido[4,5-d]pyrimidinetriones using CuI nanoparticles as a highly efficient catalyst. Z. Naturforsch. 2015, 70, 171–176.
  • Gharib, A.; Jahangir, M.; Moghadasi, S.; Safee, R. Catalytic synthesis of pyrazolo[3,4-d]pyrimidin-6-ol and pyrazolo[3,4-d]pyrimidine-6-thiol derivatives using nanoparticles of NaX zeolite as green catalyst. J. Catal. 2013, 2013, 1–4.
  • Naeimi, H.; Rashid, Z.; Zarnani, A. H.; Ghahermanzadeh, R. Efficient synthesis of novel spiro-furo-pyrido-pyrimidine-indolines by manganese ferrite nanoparticles as a highly active magnetically reusable nanocatalyst in water. New. J. Chem. 2014, 38, 348–357.
  • Abdolmohammadi, S.; Afsharpour, M. Facial one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst. Chin. Chem. Lett. 2012, 23, 257–260.
  • Banerjeee, S.; Saha, A. Free-ZnO nanoparticles: A mild, efficient and reusable catalyst for the one-pot multicomponent synthesis of tetrahydrobenzo[b]pyran and dihydropyrimidone derivatives. New. J. Chem. 2013, 37, 4170–4175.
  • Esmaeilpour, M.; Javidi, J.; Dodeji, F. N. Immobilization of phosphomolybdic acid nanoparticles on imidazole functionalized Fe3O4@SiO2: A novel and reusable nanocatalyst for one-pot synthesis of Biginelli-type 3,4-dihydro-pyrimidine-2-(1H)-ones/thiones under solvent-free conditions. RSC Adv. 2015, 5, 308–315.
  • Nemati, F.; Saeedirad, R. Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Chin. Chem. Lett. 2013, 24, 370–372.
  • Khurana, J. M.; Vij, K. Nickel nanoparticles as semiheterogeneous catalyst for one-pot, three-component synthesis of 2-amino-4H-pyrans and pyran annulated heterocyclic moieties. Synth. Commun. 2013, 43, 2294–2304.
  • Deng, J.; Mo, L. P.; Zhao, F. Y.; Zhang, Z. H.; Liu, S. X. One-pot, three-component synthesis of a library of spirooxindole-pyrimidines catalyzed by magnetic nanoparticle supported dodecyl benzenesulfonic acid in aqueous media. ACS Comb. Sci. 2012, 14, 335–341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.