Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 47, 2017 - Issue 2
1,618
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Simple and efficient approach for synthesis of hydrazones from carbonyl compounds and hydrazides catalyzed by meglumine

, , , , , , & show all
Pages 178-187 | Received 26 May 2016, Published online: 11 Nov 2016

References

  • (a) Tatum, L. A.; Su, X.; Aprahamian, I. Simple hydrazone building blocks for complicated functional materials. Acc. Chem. Res. 2014, 47, 2141–2149; (b) Guru, M. M.; Punniyamurthy, T. Copper(II)-catalyzed aerobic oxidative synthesis of substituted 1,2,3-and 1,2,4-triazoles from bisarylhydrazones via C-H functionalization/C-C/N-N/C-N bonds formation. J. Org. Chem. 2012, 77, 5063–5073; (c) Yadav, N.; Khanam, T.; Shukla, A.; Rai, N.; Hajela, K.; Ramachandran, R. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I. Org. Biomol. Chem. 2015, 13, 5475–5487; (d) Alizadeh, A.; Moafi, L.; Ghanbaripour, R.; Abadi, M. H.; Zhu, Z.; Kubicki, M. A new route for the synthesis of 1,3,4-trisubstituted pyrazolo 4,3-c quinolines via a multicomponent reaction. Tetrahedron 2015, 71, 3495–3499; (e) Cleghorn, L. A. T.; Albrecht, S.; Stojanovski, L.; Simeons, F. R. J.; Norval, S.; Kime, R.; Collie, I. T.; De Rycker, M.; Campbell, L.; Hallyburton, I.; Frearson, J. A.; Wyatt, P. G.; Read, K. D.; Gilbert, I. H. Discovery of indoline-2-carboxamide derivatives as a new class of brain-penetrant inhibitors of Trypanosoma brucei. J. Med. Chem. 2015, 58, 7695–7706; (f) Doddaramappa, S. D.; Rai, K. M. L.; Srikantamurthy, N.; Chandra; Chethan, J. Novel 5-functionalized-pyrazoles: Synthesis, characterization, and pharmacological screening. Bioorg. Med. Chem. Lett. 2015, 25, 3671–3675; (g) Josefina Aldeco-Perez, E.; Alvarez-Toledano, C.; Toscano, A.; Guadalupe Garcia-Estrada, J.; Guillermo Penieres-Carrillo, J. Reaction of arylhydrazines with an α-alkynyl-carbonylic compound: An unexpected hydration reaction. Tetrahedron Lett. 2008, 49, 2942–2945; (h) Turbiak, A. J.; Showalter, H. D. H. A new route to substituted pyrimido[5,4-e]-1,2,4-triazine-5,7(1H,6H)-diones and facile extension to 5,7(6H,8H) isomers. Synthesis 2009, 4022–4026; (i) Yu, J.; Lim, J. W.; Kim, S. Y.; Kim, J.; Kim, J. N. An efficient transition-metal-free synthesis of 1H-indazoles from arylhydrazones with montmorillonite K-10 under O2 atmosphere. Tetrahedron Lett. 2015, 56, 1432–1436.
  • Evranos-Aksoz, B.; Yabanoglu-Ciftci, S.; Ucar, G.; Yelekci, K.; Ertan, R. Synthesis of some novel hydrazone and 2-pyrazoline derivatives: Monoamine oxidase inhibitory activities and docking studies. Bioorg. Med. Chem. Lett. 2014, 24, 3278–3284.
  • Kaplancikli, Z. A.; Yurttas, L.; Ozdemir, A.; Turan-Zitouni, G.; Ciftci, G. A.; Yildirim, S. U.; Abu Mohsen, U. Synthesis and antiproliferative activity of new 1,5-disubstituted tetrazoles bearing hydrazone moiety. Med. Chem. Res. 2014, 23, 1067–1075.
  • Mashayekhi, V.; Tehrani, K.; Amidi, S.; Kobarfard, F. Synthesis of novel indole hydrazone derivatives and evaluation of their antiplatelet aggregation activity. Chem. Pharm. Bull. 2013, 61, 144–150.
  • Toledano-Magana, Y.; Melendrez-Luevano, R.; Navarro-Olivarria, M.; Garcia-Ramos, J. C.; Flores-Alamo, M.; Ortiz-Frade, L.; Ruiz-Azuara, L.; Cabrera-Vivas, B. M. Synthesis, characterization, and evaluation of the substituent effect on the amoebicide activity of new hydrazone derivatives. MedChemComm. 2014, 5, 989–996.
  • Wang, Y.; Yu, X.; Zhi, X. Y.; Xiao, X.; Yang, C.; Xu, H. Synthesis and insecticidal activity of novel hydrazone compounds derived from a naturally occurring lignan podophyllotoxin against Mythimna separata (Walker). Bioorg. Med. Chem. Lett. 2014, 24, 2621–2624.
  • Kamal, R.; Kumar, V.; Bhardwaj, V.; Kumar, V.; Aneja, K. R. Synthesis, characterization, and in vitro antimicrobial evaluation of some novel hydrazone derivatives bearing pyrimidinyl and pyrazolyl moieties as a promising heterocycles. Med. Chem. Res. 2015, 24, 2551–2560.
  • Qin, M. Z.; Wang, T. T.; Xu, B. X.; Ma, Z. H.; Jiang, N.; Xie, H. B.; Gong, P.; Zhao, Y. F. Novel hydrazone moiety-bearing aminopyrimidines as selective inhibitors of epidermal growth factor receptor T790M mutant. Eur. J. Med. Chem. 2015, 104, 115–126.
  • Rajitha, G.; Prasad, K.; Umamaheswari, A.; Pradhan, D.; Bharathi, K. Synthesis, biological evaluation, and molecular docking studies of N-(α-acetamido cinnamoyl) aryl hydrazone derivatives as antiinflammatory and analgesic agents. Med. Chem. Res. 2014, 23, 5204–5214.
  • Aysha, T.; Lycka, A.; Lunak, S.; Machalicky, O.; Elsedik, M.; Hrdina, R. Synthesis and spectral properties of new hydrazone dyes and their Co(III) azo complexes. Dyes Pigm. 2013, 98, 547–556.
  • Li, C. R.; Liao, Z. C.; Qin, J. C.; Wang, B. D.; Yang, Z. Y. Study on 2-acetylpyrazine (pyridine-2′-acetyl) hydrazone as a fluorescent sensor for Al3+. J. Lumin. 2015, 168, 330–333.
  • Denmark, S. E.; Chang, W. T. T.; Houk, K. N.; Liu, P. Development of chiral bis-hydrazone ligands for the enantioselective cross-coupling reactions of aryldimethylsilanolates. J. Org. Chem. 2015, 80 (1), 313–366.
  • Hajipour, A. R.; Mohammadpoor-Baltork, I.; Bigdeli, M. A convenient and mild procedure for the synthesis of hydrazones and semicarbazones from aldehydes or ketones under solvent-free conditions. J. Chem. Res. 1999, 570–571.
  • Szmant, H. H.; McGinnis, C. Hydrazones and azines of diaryl ketones. J. Am. Chem. Soc. 1950, 72, 2890–2892.
  • (a) Hwu, J. R.; Lin, C. C.; Chuang, S. H.; King, K. Y.; Sue, T. R.; Tsay, S. C. Aminyl and iminyl radicals from arylhydrazones in the photo-induced DNA cleavage. Bioorg. Med. Chem. 2004, 12, 2509–2515; (b) Adlapalli, R. K.; Chourasia, O. P.; Vemuri, K.; Sritharan, M.; Perali, R. S. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group. Bioorg. Med. Chem. Lett. 2012, 22, 2708–2711.
  • Kiasat, A. R.; Kazemi, F.; Nourbakhsh, K. H2SO4/SiO2 as an efficient catalyst for the preparation of phenylhydrazones and 2,4-dinitrophenylhydrazones under solvent-free conditions. Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179, 569–573.
  • Polshettiwar, V.; Varma, R. S. Polystyrene sulfonic acid–catalyzed greener synthesis of hydrazones in aqueous medium using microwaves. Tetrahedron Lett. 2007, 48, 5649–5652.
  • Chakraborti, A. K.; Bhagat, S.; Rudrawar, S. Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Lett. 2004, 45, 7641–7644.
  • Lalitha, A.; Pitchumani, K.; Srinivasan, C. Zeolite-mediated protection of carbonyl groups. Green Chem. 1999, 1, 173–174.
  • Niknam, K.; Kiasat, A. R.; Karimi, S. Dowex polymer-mediated protection of carbonyl groups. Synth. Commun. 2005, 35, 2231–2236.
  • Yadav, U. N.; Shankarling, G. S. Room temperature ionic liquid choline chloride–oxalic acid: A versatile catalyst for acid-catalyzed transformation in organic reactions. J. Mol. Liq. 2014, 191, 137–141.
  • Parveen, M.; Azaz, S.; Malla, A. M.; Ahmad, F.; da Silva, P. S. P.; Silva, M. R. Solvent-free, [Et3NH][HSO4]–catalyzed facile synthesis of hydrazone derivatives. New J. Chem. 2015, 39, 469–481.
  • (a) Jarikote, D. V.; Deshmukh, R. R.; Rajagopal, R.; Lahoti, R. J.; Daniel, T.; Srinivasan, K. V. Ultrasound-promoted facile synthesis of arylhydrazones at ambient conditions. Ultrason. Sonochem. 2003, 10, 45–48; (b) Lima Leite, A. C.; Moreira, D. R. d. M.; Duarte Coelho, L. C.; de Menezes, F. D.; Brondani, D. J. Synthesis of aryl-hydrazones via ultrasound irradiation in aqueous medium. Tetrahedron Lett. 2008, 49, 1538–1541.
  • Gadhwal, S.; Baruah, M.; Sandhu, J. S. Microwave-induced synthesis of hydrazones and Wolff–Kishner reduction of carbonyl compounds. Synlett 1999, 1573–1574.
  • Mokhtari, J.; Naimi-Jamal, M. R.; Hamzeali, H.; Dekamin, M. G.; Kaupp, G. Kneading ball-milling and stoichiometric melts for the quantitative derivatization of carbonyl compounds with gas–solid recovery. ChemSusChem. 2009, 2, 248–254.
  • (a) Gu, Y.; Jérôme, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 2013, 42, 9550–9570; (b) Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv. 2015, 5, 48675–48704; (c) Guo, R. Y.; Wang, P.; Wang, G. D.; Mo, L. P.; Zhang, Z. H. One-pot, three-component synthesis of functionalized spirooxindoles in gluconic acid aqueous solution. Tetrahedron 2013, 69, 2056–2061; (d) Li, B. L.; Li, P. H.; Fang, X. N.; Li, C. X.; Sun, J. L.; Mo, L. P.; Zhang, Z. H. One-pot four-component synthesis of highly substituted pyrroles in gluconic acid aqueous solution. Tetrahedron 2013, 69, 7011–7018.
  • Yang, J.; Li, H. Q.; Li, M. H.; Peng, J. J.; Gu, Y. L. Multicomponent reactions of β-ketosulfones and formaldehyde in a bio-based binary mixture solvent system composed of meglumine and gluconic acid aqueous solution. Adv. Synth. Catal. 2012, 354, 688–700.
  • Guo, R. Y.; An, Z. M.; Mo, L. P.; Wang, R. Z.; Liu, H. X.; Wang, S. X.; Zhang, Z. H. Meglumine: A novel and efficient catalyst for one-pot, three-component combinatorial synthesis of functionalized 2-amino-4H-pyrans. ACS Comb. Sci. 2013, 15, 557–563.
  • Guo, R. Y.; An, Z. M.; Mo, L. P.; Yang, S. T.; Liu, H. X.; Wang, S. X.; Zhang, Z. H. Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives. Tetrahedron 2013, 69, 9931–9938.
  • Li, X. T.; Zhao, A. D.; Mo, L. P.; Zhang, Z. H. Meglumine-catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Adv. 2014, 4, 51580–51588.
  • Chen, H. S.; Guo, R. Y. Meglumine: An efficient, biodegradable, and recyclable green catalyst for one-pot synthesis of functionalized dihydropyridines. Monatsh. Chem. 2015, 146, 1355–1362.
  • Li, X. T.; Liu, Y. H.; Liu, X.; Zhang, Z. H. Meglumine-catalyzed one-pot, three-component combinatorial synthesis of pyrazoles bearing a coumarin unit. RSC Adv. 2015, 5, 25625–25633.
  • (a) Li, P. H.; Li, B. L.; An, Z. M.; Mo, L. P.; Cui, Z. S.; Zhang, Z. H. Magnetic nanoparticles (CoFe2O4)–supported phosphomolybdate as an efficient, green, recyclable catalyst for synthesis of β-hydroxy hydroperoxides. Adv. Synth. Catal. 2013, 355, 2952–2959; (b) Li, P. H.; Li, B. L.; Hu, H. C.; Zhao, X. N.; Zhang, Z. H. Ionic liquid supported on magnetic nanoparticles as highly efficient and recyclable catalyst for the synthesis of beta-keto enol ethers. Catal. Commun. 2014, 46, 118–122; (c) Li, B. L.; Zhang, M.; Hu, H. C.; Du, X.; Zhang, Z. H. Nano-CoFe2O4 supported molybdenum as an efficient and magnetically recoverable catalyst for a one-pot, four-component synthesis of functionalized pyrroles. New J. Chem. 2014, 38, 2435–2442; (d) Li, B. L.; Hu, H. C.; Mo, L. P.; Zhang, Z. H. Nano CoFe2O4–supported antimony(III) as an efficient and recyclable catalyst for one-pot, three-component synthesis of multisubstituted pyrroles. RSC Adv. 2014, 4, 12929–12943; (e) Lu, J.; Li, X. T.; Ma, E. Q.; Mo, L. P.; Zhang, Z. H. Superparamagnetic CuFeO2 nanoparticles in deep eutectic solvent: An efficient and recyclable catalytic system for the synthesis of imidazo[1,2-a]pyridines. ChemCatChem. 2014, 6, 2854–2859; (f) Zhao, X. N.; Hu, H. C.; Zhang, F. J.; Zhang, Z. H. Magnetic CoFe2O4–nanoparticle immobilized N-propyl diethylenetriamine sulfamic acid as an efficient and recyclable catalyst for the synthesis of amides via the Ritter reaction. Appl. Catal. A: Gen. 2014, 482, 258–265; (g) Lu, J.; Ma, E. Q.; Liu, Y. H.; Li, Y. M.; Mo, L. P.; Zhang, Z. H. One-pot, three-component synthesis of 1,2,3-triazoles using magnetic NiFe2O4-glutamate-Cu as an efficient heterogeneous catalyst in water. RSC Adv. 2015, 5, 59167–59185; (h) Zhang, M.; Lu, J.; Zhang, J. N.; Zhang, Z. H. Magnetic carbon nanotube supported Cu (CoFe2O4/CNT-Cu) catalyst: A sustainable catalyst for the synthesis of 3-nitro-2-arylimidazo 1,2-a pyridines. Catal. Commun. 2016, 78, 26–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.