Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 8
520
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Amino acids/superbases as eco-friendly catalyst system for the synthesis of cyclic carbonates under metal-free and halide-free conditions

, , , &
Pages 876-886 | Received 16 Mar 2017, Published online: 07 Mar 2018

References

  • (a) Spinner, N. S.; Vega, J. S.; Mustain, W. E. Recent progress in the electrochemical conversion and utilization of CO2. Catal. Sci. Technol. 2012, 2, 19–28; (b) Sakakura, T.; Choi, J. C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365–2387.
  • (a) Yoshida, M.; Fujita, M.; Ishii, T.; Ihara, M. A novel methodology for the synthesis of cyclic carbonates based on the palladium-catalyzed cascade reaction of 4-methoxycarbonyloxy-2-butyn-1-ols with phenols, involving a novel carbon dioxide elimination-fixation process. J. Am. Chem. Soc. 2003, 125, 4874–4881; (b) Ema, T.; Miyazaki, Y.; Shimonishi, J.; Maeda, C.; Hasegawa, J. Y. Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: structural optimization and mechanistic study. J. Am. Chem. Soc. 2014, 136, 15270–15279; (c) Maeda, C.; Taniguchi, T.; Ogawa, K.; Ema, T. Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides. Angew. Chem. Int. Ed. 2015, 54, 134–138.
  • (a) Chatelet, B.; Joucla, L.; Dutasta, J. P.; Martinez, A.; Szeto, K. C.; Dufaud, V. Azaphosphatranes as structurally tunable organocatalysts for carbonate synthesis from CO2 and epoxides. J. Am. Chem. Soc. 2013, 135, 5348–5351; (b) Clements, J. H. Reactive applications of cyclic carbonates. Ind. Eng. Chem. Res. 2003, 42, 663–674; (c) Yoshida, M.; Ihara, M. Novel methodologies for the synthesis of cyclic carbonates. Chem. Eur. J. 2004, 10, 2886–2893.
  • (a) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 1999, 121, 4526–4527; (b) Yasuda, H.; He, L. N.; Sakakura, T.; Hu, C. W. Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: the remarkable effects of metal substitution. J. Catal. 2005, 233, 119–122.
  • Escarcega-Bobadilla, M. V.; Belmonte, M. M.; Martin, E.; Escudero-Adan, E. C.; Kleij, A. W. A recyclable trinuclear bifunctional catalyst derived from a tetraoxo bis-Zn(salphen) metalloligand. Chem. Eur. J. 2013, 19, 2641–2648.
  • Zhou, H.; Wang, Y. M.; Zhang, W. Z.; Qu, J. P.; Lu, X. B. N-Heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide. Green Chem. 2011, 13, 644.
  • (a) Sun, J.; Zhang, S.; Cheng, W.; Ren, J. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett. 2008, 49, 3588–3591; (b) Cheng, W.; Xiao, B.; Sun, J.; Dong, K.; Zhang, P.; Zhang, S.; Ng, F. T. T. Effect of hydrogen bond of hydroxyl-functionalized ammonium ionic liquids on cycloaddition of CO2. Tetrahedron Lett. 2015, 56, 1416–1419.
  • (a) Chen, X.; Sun, J.; Wang, J.; Cheng, W. Polystyrene-bound diethanolamine based ionic liquids for chemical fixation of CO2. Tetrahedron Lett. 2012, 53, 2684–2688; (b) Cui, K.; Liang, Z.; Zhang, J.; Zhang, Y. Synthesis of cyclohexene carbonate catalyzed by polymer-supported catalysts. Synth. Commun. 2015, 45, 712–723.
  • Ema, T.; Miyazaki, Y.; Shimonishi, J.; Maeda, C.; Hasegawa, J. Y. Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: structural optimization and mechanistic study. J. Am. Chem. Soc. 2014, 136, 15270–15279.
  • (a) Yang, Z. Z.; He, L. N.; Zhao, Y. N.; Li, B.; Yu, B. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energ. Environ. Sci. 2011, 4, 3971–3975; (b) Wang, C.; Luo, H.; Jiang, D. E.; Li, H.; Dai, S. Carbon dioxide capture by superbase-derived protic ionic liquids. Angew. Chem. Int. Ed. 2010, 122, 6114–6117; (c) Carrera, G. V.; Jordão, N.; Branco, L. C.; Ponte, M. N. CO2 capture and reversible release using mono-saccharides and an organic superbase. J. Supercrit. Fluid. 2015, 105, 151–157; (d) Wang, C. M.; Luo, H. M.; Luo, X. Y.; Li, H. R.; Dai, S. Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems. Green Chem. 2010, 12, 2019–2023; (e) Wang, C.; Mahurin, S. M.; Luo, H.; Baker, G. A.; Li, H.; Dai, S. Reversible and robust CO2 capture by equimolar task-specific ionic liquid–superbase mixtures. Green Chem. 2010, 12, 870; (f) Carrera, G. V. S. M.; Jordao, N.; Santos, M. M.; Ponte, M. N.; Branco, L. C. Reversible systems based on CO2, amino-acids and organic superbases. RSC Adv. 2015, 5, 35564–35571; (g) Jing, H. W.; Nguyen, S. T. SnCl4-organic base: highly efficient catalyst system for coupling reaction of CO2 and epoxides. J. Mol. Catal. A Chem. 2007, 261, 12–15.
  • Sun, J.; Cheng, W. C.; Yang, Z. F.; Wang, J. Q.; Xu, T. T.; Xin, J. Y.; Zhang, S. J. Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chem. 2014, 16, 3071–3078.
  • Liu, X.; Zhang, S.; Song, Q. W.; Liu, X. F.; Ma, R.; He, L. N. Cooperative calcium-based catalysis with 1,8-diazabicyclo[5.4.0]-undec-7-ene for the cycloaddition of epoxides with CO2 at atmospheric pressure. Green Chem. 2016, 18, 2871–2876.
  • (a) Chen, W.; Zhang, Y. Z.; Zhu, L. B.; Lan, J. B.; Xie, R. G.; You, J. S. A concept of supported amino acid ionic liquids and their application in metal scavenging and heterogeneous catalysis. J. Am. Chem. Soc. 2007, 129, 13879–13886; (b) Wasserscheid, P.; Bosmann, A.; Bolm, C. Synthesis and properties of ionic liquids derived from the ‘chiral pool’. Chem. Commun. 2002, 3, 200–201.
  • Wu, F.; Dou, X. Y.; He, L. N.; Miao, C. X. Natural amino acid-based ionic liquids as efficient catalysts for the synthesis of cyclic carbonates from CO2 and epoxides under solvent-free conditions. Lett. Org. Chem. 2010, 7, 73–78.
  • Heldebrant, D. J.; Yonker, C. R.; Jessop, P. G.; Phan, L. Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energ. Environ. Sci. 2008, 1, 487–493.
  • Sun, J.; Cheng, W.; Yang, Z.; Wang, J.; Xu, T.; Xin, J.; Zhang, S. Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chem. 2014, 16, 3071–3078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.