Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 1
645
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Cu(I)-phosphine complex: An efficient catalyst for synthesis of 3-indole derivatives through one-pot MCR under mild conditions

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 104-114 | Received 06 Jul 2017, Published online: 14 Dec 2017

References

  • (a) Dömling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006, 106, 17–89. DOI: 10.1021/cr0505728; (b) Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135; (c) Toure, B. B.; Hall, D. G. Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem. Rev. 2009, 109, 4439–4486. DOI: 10.1021/cr0505728.
  • (a) Climent, M. J.; Corma, A.; Iborra, S. Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chem. Rev. 2011, 111, 1072–1133. DOI: 10.1002/chin.201120241; (b) Eissen, M.; Metzger, J. O.; Schmidt, E.; Schneidewind, U. 10 Years After Rio-Concepts on the Contribution of Chemistry to a Sustainable Development. Angew. Chem., Int. Ed. 2002, 41, 414–436; (c) Climent, M. J.; Corma, A.; Iborra, S. Homogeneous and Heterogeneous Catalysts for Multicomponent Reactions. RSC Adv. 2012, 2, 16–58. DOI: 10.1039/c1ra00807b; (d) Gu, Y. Multicomponent Reactions in Unconventional Solvents: State of the Art. Green Chem. 2012, 14, 2091–2128. DOI: 10.1002/chin.201120241.
  • Prasad, A. N.; Reddy, B. M.; Jeong, E.-Y.; Park, S.-E. Cu(II) PBS-Bridged PMOs Catalyzed One-Pot Synthesis of 1,4-Disubstituted 1,2,3-Triazoles in Water through Click Chemistry. RSC Adv. 2014, 4, 29772–29781. DOI: 10.1039/c4ra04093g.
  • (a) Casapullo, A.; Bifulco, G.; Bruno, I.; Riccio, R. New Bisindole Alkaloids of the Topsentin and Hamacanthin Classes from the Mediterranean Marine Sponge Rhaphisia lacazei. J. Nat. Prod. 2000, 63, 447–451. DOI: 10.1021/np9903292; (b) Horgen, F. D.; delos Santos, D. B.; Goetz, G.; Sakamoto, B.; Kan, Y.; Nagai, H.; Scheuer, P. J. A New Depsipeptide from the Sacoglossan Mollusk elysia Ornata and the Green Alga bryopsis Species. J. Nat. Prod. 2000, 63, 152–154. DOI: 10.1021/np990402o; (c) Zhang, X.; Mu, T.; Zhan, F.; Ma, L.; Liang, G. Total Synthesis of (+)-Isatisine A. Angew. Chem., Int. Ed. 2011, 50, 6164–6166. DOI: 10.1021/np9903292.
  • (a) Lee, Y. J.; Han, Y. R.; Park, W.; Nam, S. H.; Oh, K. B.; Lee, H. S. Synthetic Analogs of Indole-Containing Natural Products as Inhibitors of Sortase A and Isocitrate Lyase. Bioorg. Med. Chem. Lett. 2010, 20, 6882–6885. DOI: 10.1016/j.bmcl.2010.10.029; (b) Feng, T.; Li, Y.; Wang, Y. Y.; Cai, X. H.; Liu, Y. P.; Luo, X. D. Cytotoxic Indole Alkaloids from Melodinus tenuicaudatus. J. Nat. Prod. 2010, 73, 1075–1079. DOI: 10.1016/j.bmcl.2010.10.029.
  • Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Meldrum’s Acid in Organic Synthesis. 1. A Convenient One-Pot Synthesis of Ethyl Indolepropionates. Tetrahedron Lett. 1978, 20, 1759–1762. DOI: 10.1016/0040-4039(78)80037-9.
  • (a) Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Meldrum’s Acid in Organic Synthesis. V. Versatile One-Pot Synthesis of Indolepropionic Esters via Simultaneous Condensation of Three Different Carbon Components, Indole, Aldehydes and Meldrum’s Acid. Chem. Pharm. Bull. 1982, 30, 3092–3096. DOI: 10.1002/chin.198319195 (b) Oikawa, Y.; Tanaka, M.; Hirasawa, H.; Yonemitsu, O. Reactions and Synthetic Applications of β-Keto Sulfoxides. X. Synthesis of Ellipticine Analogs Modified at the 5-Position. Chem. Pharm. Bull. 1981, 29, 1606–1614. DOI: 10.1002/chin.198319195.
  • Sapi, J.; Laronge, J. Y. Indole Based Multicomponent Reactions Towards Functionalized Heterocycle. Arkivoc 2004, Vii, 208–222.
  • (a) Renzetti, A.; Dardennes, E.; Fontana, A.; Maria, P. D.; Sapi, J., Gérard, S. TiCl4/Et3N-Promoted Three-Component Condensation between Aromatic Heterocycles, Aldehydes, and Active Methylene Compounds. J. Org. Chem. 2008, 73, 6824–6827. DOI: 10.1021/jo800529q; (b) Gerard, S.; Renzetti, A.; Lefevre, B.; Fontana, A.; Maria, P. D.; Sapi, J. Multicomponent Reactions Studies: Yonemitsu-Type Trimolecular Condensations Promoted by Ti(IV) Derivatives. Tetrahedron 2010, 66, 3065–3069. DOI: 10.1016/j.tet.2010.02.025; (c) Marrone, A.; Renzetti, A.; Maria, P. D.; Gérard, S.; Sapi, J.; Fontana, A.; Re, N. Condensation of β-Diester Titanium Enolates with Carbonyl Substrates: A Combined DFT and Experimental Investigation. Chem. Eur. J. 2009, 15, 11537–11550. DOI: 10.1002/chin.200903119.
  • Epifano, F.; Genovese, S.; Rosati, O.; Tagliapietra, S.; Peluchini, C.; Curini, M. Ytterbium Triflate Catalyzed Synthesis of β-Functionalized Indole Derivatives. Tetrahedron Lett. 2011, 52, 568–571. DOI: 10.1016/j.tetlet.2010.11.128.
  • (a) Li, M.; Taheri, A.; Liu, M.; Sun, S.; Gu, Y. Three-Component Reactions of Aromatic Aldehydes and Two Different Nucleophiles and their Leaving Ability-Determined Downstream Conversions of the Products. Adv. Synth. Catal. 2014, 356, 537–556. DOI: 10.1002/adsc.201300790; (b) He, Y.-H.; Cao, J.-F.; Li, R.; Xiang, Y.; Yang, D.-C.; Guan, Z. L-Proline-Catalyzed Multicomponent Synthesis of 3-Indole Derivatives. Tetrahedron 2015, 71, 9299–9306. DOI: 10.1016/j.tet.2015.10.027; (c) Dardennes, E.; Kovacs-Kulyassa, A.; Boisbrun, M.; Petermann, C.; Laronze, J.-Y.; Sapi, J. Diastereocontrolled Multicomponent Pathway to 3,4-Heterocycle-Annulated Tetrahydro-β-Carbolines. Tetrahedron: Asymmetry 2005, 16, 1329–1339. DOI: 10.1016/j.tetasy.2005.02.008; (d) Dardennes, E.; Gerard, S.; Petermann, C.; Sapi, J. Diastereoselective Trimolecular Condensation between Indole, Meldrum’s Acid and Chiral Sugar-Derived Aldehydes. Tetrahedron: Asymmetry 2010, 21, 208–215.
  • Renzetti, A.; Boffa, E.; Colazzo, M.; Gerard, S.; Sapi, J.; Chan, T.-H.; Nakazawa, H.; Villani, C.; Fontana, A. Yonemitsu-Type Condensations Catalysed by Proline and Eu(OTf)3. RSC Adv. 2014, 4, 47992–47999. DOI: 10.1039/c4ra08853k.
  • Qu, Y.; Ke, F.; Zhou, L.; Li, Z.; Xiang, H.; Wuab, D.; Zhou, X. Synthesis of 3-Indole Derivatives by Copper Sulfonato Salen Catalyzed Three-Component Reactions in Water. Chem. Commun. 2011, 47, 3912–3914. DOI: 10.1039/c0cc05695b.
  • Anselmo, D.; Escudero-Adán, E. C.; Belmonte, M. M.; Kleij, A. W. Zn-Mediated Synthesis of 3-Substituted Indoles Using a Three-Component Reaction Approach. Eur. J. Inorg. Chem. 2012, 2012, 4694–4700. DOI: 10.1002/ejic.201200150.
  • Chen, W.; Cai, Y.; Fu, X.; Liu, X.; Lin, L.; Feng, X. Enantioselective One-Pot Synthesis of 2-Amino-4-(Indol-3-yl)-4H-Chromenes. Org. Lett. 2011, 13, 4910–4913. DOI: 10.1002/chin.201203126.
  • Singh, N.; Allam, B. K.; Raghuvanshi D. S.; Singh, K. N. An Efficient Tetrabutylammonium Fluoride (TBAF)-Catalyzed Three-Component Synthesis of 3-Substituted Indole Derivatives Under Solvent-Free Conditions. Adv. Synth. Catal. 2013, 355, 1840–1848. DOI: 10.1002/chin.201345113.
  • (a) Jing, L.; Wei, J.; Zhou, L.; Huang, Z.; Li, Z.; Wu, D.; Xiang, H.; Zhou, X. Highly Enantioselective Michael Addition of Malononitrile to Vinylogous Imine Intermediates Generated In Situ from Arylsulfonyl Indoles. Chem. Eur. J. 2010, 16, 10955–10958. DOI: 10.1002/chem.201001662; (b) Marcelli, T.; Hiemstra, H. Cinchona Alkaloids in Asymmetric Organocatalysis. Synthesis 2010, 8, 1229–1279. DOI: 10.1055/s-0029-1218699; (c) Connon, S. J. The Design of Novel, Synthetically Useful (thio)Urea-Based Organocatalysts. Synlett 2009, 3, 354–376. DOI: 10.1055/s-0028-1087557; (d) Connon, S. J. Asymmetric Catalysis with Bifunctional Cinchona Alkaloid-Based Urea and Thiourea Organocatalysts. Chem. Commun. 2008, 22, 2499–2510. DOI: 10.1002/chin.200838231; (e) Connon, S. J. Organocatalysis Mediated by (thio)Urea Derivatives. Chem. Eur. J. 2006, 12, 5418–5427. DOI: 10.1002/chin.200643226; (f) Schreiner, P. R. Metal-Free Organocatalysis Through Explicit Hydrogen Bonding Interactions. Chem. Soc. Rev. 2003, 32, 289–296. DOI: 10.1002/chem.201001662.
  • Sui, Y.; Liu, L.; Zhao, J.-L.; Wang, D.; Chen, Y.-J. An Efficient One-Pot Reaction of Indoles, Nitroacetate, and Paraformaldehyde for the Synthesis of Tryptophan Derivatives. Tetrahedron Lett. 2007, 48, 3779–3782. DOI: 10.1016/j.tetlet.2007.04.002.
  • Armstrong, E. L.; Grover, H. K.; Kerr, M. A. Scandium Triflate-Catalyzed Nucleophilic Additions to Indolylmethyl Meldrum’s Acid Derivatives via a Gramine-Type Fragmentation: Synthesis of Substituted Indolemethanes. J. Org. Chem. 2013, 78, 10534–10540. DOI: 10.1021/jo4017524.
  • Shanthi, G.; Perumal, P. T. An Eco-Friendly Synthesis of 2-Aminochromenes and Indolyl Chromenes Catalyzed by InCl3 in Aqueous Media. Tetrahedron Lett. 2007, 48, 6785–6789. DOI: 10.1016/j.tetlet.2007.07.102.
  • Wang, L. L.; Huang, M. N.; Zhu, X. H.; Wan, Y. Q. Polyethylene Glycol (PEG-200)-Promoted Sustainable One-Pot Three-Component Synthesis of 3-Indole Derivatives in Water. Appl. Catal. A 2013, 454, 160–163. DOI: 10.1016/j.apcata.2012.12.008.
  • Chandrasekhar, S.; Patro, V.; Reddy, G. P. K.; Grée, R. A Ligand-Free Copper(II)-Catalyzed Three-Component Reaction in Poly(Ethylene Glycol) Medium: A Versatile Protocol for the Preparation of Selected 3-Indole Derivatives. Tetrahedron Lett. 2012, 53, 6223–6225. DOI: 10.1016/j.tetlet.2012.09.008.
  • Wakamatsu, T.; Nagao, K.; Ohmiya, H.; Sawamura, M. Copper-Catalyzed Semihydrogenation of Internal Alkynes with Molecular Hydrogen. Organometallics 2016, 35, 1354–1357. DOI: 10.1021/acs.organomet.6b00126.
  • Semba, K.; Kameyama, R.; Nakao, Y. Copper-Catalyzed Semihydrogenation of Alkynes to Z-Alkenes. Synlett 2015, 26, 318–322. DOI: 10.1055/s-0034-1379896.
  • Wang, J. X.; Hu, Z. L. Y.; Wei, B. Copper-Catalysed Cross Coupling Reaction Under Microwave Irradiation Conditions. J. Chem. Res. 2000, 2000, 536–537.
  • Lal, S.; McNally, J.; White, A. J. P.; Díez-González, S. Novel Phosphinite and Phosphonite Copper(I) Complexes: Efficient Catalysts for Click Azide–Alkyne Cycloaddition Reactions. Organomet 2011, 30, 6225–6232.
  • (a) Prasad, A. N.; Thirupathi, B.; Raju, G.; Srinivas R.; Reddy, B. M. One Pot ‘Click’ Reaction: CuII–Hydrotalcite Catalyzed Tandem Synthesis of β-Hydroxy Triazoles via Regioselective Opening of Epoxide Followed by [3 + 2] Cycloaddition. Catal. Sci. Technol. 2012, 2, 1264–1268. DOI: 10.1039/c2cy20052j (b) Prasad, A. N.; Srinivas, R.; Reddy, B. M. CuII-Hydrotalcite Catalyzed One-Pot Three Component Synthesis of 2H-Indazoles by Consecutive Condensation, C-N and N-N Bond Formations. Catal. Sci. Technol. 2013, 3, 654–658. DOI: 10.1039/c2cy20590d; (c) Braga, F. C.; Prasad, A. N.; Gomes, R. S.; Nascimento, V. A.; Oliveira, S. L.; Caires, A. R. L.; de Lima, D. P.; Beatriz, A. Design, Synthesis and Fluorescence Analysis of Potential Fluorescent Markers Based on Cardanol and Glycerol. Dyes Pigments 2017, 141, 235–244. DOI: 10.1039/c2cy20052j.
  • (a) Jardine, F. H.; Rule, L.; Vohra, A. G. The Chemistry of Copper(I) Complexes. Part I. Halogeno-Complexes. J. Chem. Soc. A 1970, 238–240. DOI: 10.1039/j19700000238; (b) Favarin, L. R. V.; Rosa, P. P.; Pizzuti, L.; Machulek, Jr., A.; Caires, A. R. L.; Bezerra, L. S.; Pinto, L. M. C.; Maia, G.; Gatto, C. C.; Back, D. F.; dos Anjos, A.; Casagrande, G. A. Synthesis and Structural Characterization of New Heteroleptic Copper (I) Complexes Based on Mixed Phosphine/Thiocarbamoyl-Pyrazoline Ligands. Polyhedron 2017, 121, 185–190. DOI: 10.1039/j19700000238.
  • Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; John Wiley & Sons Inc., New York, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.