Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 9
158
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Facile strategy for the preparation of pyrazoline derivatives through phosphine-promoted [2 + 3] cycloaddition of dialkyl azodicarboxylates with β,γ-unsaturated α-keto esters

ORCID Icon, &
Pages 1085-1091 | Received 13 Aug 2017, Published online: 26 Mar 2018

References

  • Burt, C.; Corbau, R.; Mowbray, C. E.; Perros, M.; Tran, I.; Stupple, P. A.; Webster, R.; Wood, A. Pyrazole NNRTIs 1: Design and Initial Optimisation of a Novel Template. Bioorg. Med. Chem. Lett. 2009, 19, 5599–5602. DOI: 10.1016/j.bmcl.2009.08.039.
  • Thomas, J. B.; Giddings, A. M.; Wiethe, R. W.; Olepu, S.; Warner, K. R.; Sarret, P.; Gendron, L.; Longpre, J.-M.; Zhang, Y.; Runyon, S. P.; et al. Identification of 1-({[1-(4-Fluorophenyl)-5-(2-methoxyphenyl)-1H-pyrazol-3-yl]carbonyl}amino)cyclohexane Carboxylic Acid as a Selective Nonpeptide Neurotensin Receptor Type 2 Compound. J. Med. Chem. 2014, 57, 5318–5332. DOI: 10.1021/jm5003843.
  • Casimiro-Garcia, A.; Piotrowski, D. W.; Ambler, C.; Arhancet, G. B.; Banker, M. E.; Banks, T.; Boustany-Kari, C. M.; Cai, C.; Chen, X.; Eudy, R.; et al. Identification of (R)-6-(1-(4-cyano-3-methylphenyl)-5-cyclopentyl-4,5-dihydro-1H-pyrazol-3-yl)-2-methoxynicotinic acid, a Highly Potent and Selective Nonsteroidal Mineralocorticoid Receptor Antagonist. J. Med. Chem. 2014, 57, 4273–4288. DOI: 10.1021/jm500206r.
  • For selected recent examples about synthesis of pyrazoline or its analogues: (a) Zhang, Q.; Meng, L.-G.; Wang, K.; Wang, L. nBu3P-Catalyzed Desulfonylative [3 + 2] Cycloadditions of Allylic Carbonates with Arylazosulfones to Pyrazole Derivatives. Org. Lett. 2015, 17, 872–875. DOI: 10.1021/ol503735c; (b) Yang, C.; Liu, W.; He, Z.; He, Z. Divergent Reactivity of Nitrocyclopropanes with Huisgen Zwitterions and Facile Syntheses of 3-Alkoxy Pyrazolines and Pyrazoles. Org. Lett. 2016, 18, 4936–4939. DOI: 10.1021/acs.orglett.6b02415; (c) Zhang, Z.; Wang, D.; Wei, Y.; Shi, M. Facile Synthesis of 2-Pyrazolines and α,β-diamino Ketones via Regioselective Ring-Opening of Hydrazone-Tethered Aziridines. Chem. Commun. 2012, 48, 9607–9609. DOI: 10.1039/c2cc35135h; (d) Gao, L.; Hwang, G.-S.; Lee, M. Y.; Ryu, D. H. Catalytic Enantioselective 1,3-dipolar Cycloadditions of Alkyldiazoacetates with α,β-Disubstituted Acroleins. Chem. Commun. 2009, 5460–5462. DOI: 10.1039/b910321j.
  • For selected recent examples and reviewers: (a) Methot, J. L.; Roush, W. R. Nucleophilic Phosphine Organocatalysis. Adv. Synth. Catal. 2004, 346, 1035–1050. DOI: 10.1002/adsc.200404087; (b) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Development of Asymmetric Phosphine-Promoted Annulations of Allenes with Electron-Deficient Olefins and Imines. Chem. Commun. 2012, 48, 1724–1732. DOI: 10.1039/c1cc15793k; (c) Fan, Y. C.; Kwon, O. Advances in Nucleophilic Phosphine Catalysis of Alkenes, Allenes, Alkynes, and MBHADs. Chem. Commun. 2013, 49, 11588–619. DOI: 10.1039/c3cc47368f; (d) Wang, Z.; Xu, X.; Kwon, O. Phosphine Catalysis of Allenes with Electrophiles. Chem. Soc. Rev. 2014, 43, 2927–2940. DOI: 10.1039/c4cs00054d; (e) Ye, L.-W.; Zhou, J.; Tang, Y. Phosphine-Triggered Synthesis of Functionalized Cyclic Compounds. Chem. Soc. Rev. 2008, 37, 1140–1152. DOI: 10.1039/b717758e; (f) Lu, X.; Zhang, C.; Xu, Z. Reactions of Electron-Deficient Alkynes and Allenes Under Phosphine Catalysis. Acc. Chem. Res. 2001, 34, 535–544. DOI: 10.1021/ar000253x; (g) Denmark, S. E.; Beutner, G. L. Lewis Base Catalysis in Organic Synthesis. Angew. Chem. Int. Ed. 2008, 47, 1560–1638. DOI: 10.1002/anie.200604943; (h) Lu, X.; Du, Y.; Lu, C. Synthetic Methodology Using Tertiary Phosphines as Nucleophilic Catalysts. Pure Appl. Chem. 2005, 77, 1985–1990. DOI: 10.1002/chin.200624252; (i) Marinetti, A.; Voituriez, A. Enantioselective Phosphine Organocatalysis. Synlett 2010, 2010, 174–194. DOI: 10.1055/s-0029-1219157; (j) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. Chiral Phosphines in Nucleophilic Organocatalysis. Beilstein J. Org. Chem. 2014, 10, 2089–2121. DOI: 10.3762/bjoc.10.218; (k) Xiao, Y.; Guo, H.; Kwon, O. Nucleophilic Chiral Phosphines: Powerful and Versatile Catalysts for Asymmetric Annulations. Aldrichim. Acta 2016, 49, 3–13; (l) Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations. Acc. Chem. Res. 2016, 49, 1369–1378. DOI: 10.1002/chin.201639236; (m) Li, H.; Lu, Y. Enantioselective Construction of All-Carbon Quaternary Stereogenic Centers by Using Phosphine Catalysis. Asian J. Org. Chem. 2017, 6, 1130–1145. DOI: 10.1002/ajoc.201700220.
  • (a) Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Mitsunobu and Related Reactions: Advances and Applications. Chem. Rev. 2009, 109, 2551–2651. DOI: 10.1021/cr800278z; (b) Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Engaging Zwitterions in Carbon−Carbon and Carbon−Nitrogen Bond-Forming Reactions:A Promising Synthetic Strategy. Acc. Chem. Res. 2006, 39, 520–530. DOI: 10.1002/chin.200645257.
  • Liu, X.-G.; Wei, Y.; Shi, M. The Reaction of Acyl Cyanides with “Huisgen Zwitterion”: An Interesting Rearrangement Involving Ester Group Migration Between Oxygen and Nitrogen Atoms. Org. Biomol. Chem. 2009, 7, 4708–4714. DOI: 10.1039/b913196e.
  • Nair, V.; Biju, A. T.; Abhilash, K. G.; Menon, R. S.; Suresh, E. Reaction of Diaryl-1,2-diones with Triphenylphosphine and Diethyl Azodicarboxylate Leading to N,N-Dicarboethoxy Monohydrazones via a Novel Rearrangement. Org. Lett. 2005, 7, 2121–2123. DOI: 10.1002/chin.200542105.
  • Nair, V.; Mathew, S. C.; Biju, A. T.; Suresh, E. Reaction of Huisgen Zwitterion with Diaryl Ketones Leading to the Facile Synthesis of Mono- and Bis(Alkoxycarbonyl)Hydrazones. Sythesis 2008, 2008, 1078–1084.
  • (a) Su, Y.; Jiang, Z.; Hong, D.; Lu, P.; Wang, Y.; Lin, X. Cascade Synthesis of Substituted 4-Amino-1,2,4-triazol-3-ones from Aldehyde Hydrazones and Azodicarboxylates. Tetrahedron 2010, 66, 2427–2432. DOI: 10.1016/j.tet.2010.01.087; (b) Lian, Z.; Guan, X.-Y.; Shi, M. Phosphine-Mediated Annulation of N-Protected Imines with DEAD. Tetrahedron 2011, 67, 2018-2024. DOI: 10.1016/j.tet.2011.01.072.
  • Fourmy, K.; Voituriez, A. Catalytic Cyclization Reactions of Huisgen Zwitterion with α-Ketoesters by In Situ Chemoselective Phosphine Oxide Reduction. Org. Lett. 2015, 17, 1537–1540. DOI: 10.1021/acs.orglett.5b00426.
  • Nair, V.; Biju, A. T.; Vinod, A. U.; Suresh, E. Reaction of Huisgen Zwitterion with 1,2-Benzoquinones and Isatins: Expeditious Synthesis of Dihydro-1,2,3-benzoxadiazoles and Spirooxadiazolines. Org. Lett. 2005, 7, 5139–5142. DOI: 10.1021/ol051956n.
  • (a) Yamazaki, S.; Maenaka, Y.; Fujinami, K.; Mikata, Y. Triphenylphosphine-Mediated Reaction of Dialkyl Azodicarboxylate with Activated Alkenes Leading to Pyrazolines. RSC Adv. 2012, 2, 8095–8103. DOI: 10.1002/chin.201308123; (b) Lü, R.; Cheng, X.; Zheng, X.; Ma, S. Efficient Synthesis of 1,2-Bis(alkoxycarbonyl)pyrazol-3-ones from 2,3-Allenoic Acids, Azodicarboxylates and PPh3. Chem. Commun. 2014, 50, 1537–1539. DOI: 10.1039/c3cc48215d; (c) Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Novel Synthesis of Highly Functionalized Pyrazolines and Pyrazoles by Triphenylphosphine-Mediated Reaction of Dialkyl Azodicarboxylate with Allenic Esters. Org. Lett. 2006, 8, 2213–2216. DOI: 10.1021/ol0604623; (d) Cui, S.-L.; Wang, J.; Wang Y.-G. Facile Access to Pyrazolines via Domino Reaction of the Huisgen Zwitterions with Aziridines. Org. Lett. 2008, 10, 13–16. DOI: 10.1021/ol7022888.
  • For selected examples about construction of oxygen-containing heterocycles: (a) Yao, W.; Wu, Y.; Wang, G.; Zhang, Y.; Ma, C. Tertiary Amine Mediated Tandem Cross-Rauhut–Currier/Acetalization Reactions: Access to Functionalized Spiro-3,4-Dihydropyrans. Angew. Chem. Int. Ed. 2009, 48, 9713–9716. DOI: 10.1002/anie.200905091; (b) Wu, Y.; Yao, W.; Pan, L.; Zhang, Y.; Ma, C. N-Heterocyclic Carbene Catalyzed Transformations of 3-Halopropenals to the Equivalents of β-Acylvinyl Anions. Org. Lett. 2010, 12, 640–643. DOI: 10.1021/ol902961y; (c) Zhang, L.; Wang, Y.; Song, H.; Zhou, Z.; Tang, C. Cascade Michael-Intramolecular Transesterification-Elimination Reaction of 3,4-Dihydro-3-nitrochromen-2-ones and β,γ-Unsaturated α-Oxo Esters: An Efficient Access to 2-Pyrone Derivatives. Eur. J. Org. Chem. 2014, 2014, 3163–3169. DOI: 10.1002/ejoc.201301876; (d) Evans, D. A.; Johnson, J. S.; Olhava, E. J. Enantioselective Synthesis of Dihydropyrans. Catalysis of Hetero Diels−Alder Reactions by Bis(Oxazoline) Copper(II) Complexes. J. Am. Chem. Soc. 2000, 122, 1635–1649. DOI: 10.1021/ja992175i; (e) Peng, J.-B.; Qi, Y.; Jing, Z.-R.; Wang, S.-H.; Tu, Y.-Q.; Zhu, D.-Y.; Zhang, F.-M. Efficient Oxa-Diels-Alder/Semipinacol Rearrangement/Aldol Cascade Reaction: Short Approach to Polycyclic Architectures. Org. Lett. 2015, 17, 1014–1017. DOI: 10.1021/acs.orglett.5b00125.
  • Zhao, D.; Wang, L.; Yang, D.; Zhang, Y.; Wang, R. Highly Efficient Asymmetric Michael Addition of Diaryl Phosphine Oxides to α,β-Unsaturated N-Acylated oxazolidin-2-ones. Chem. Asian J. 2012, 7, 881–883. DOI: 10.1002/asia.201200025.
  • Nair, V.; Mathew, S. C.; Biju, A. T.; Suresh, E. A Novel Reaction of the “Huisgen Zwitterion” with Chalcones and Dienones: An Efficient Strategy for the Synthesis of Pyrazoline and Pyrazolopyridazine Derivatives. Angew. Chem. Int. Ed. 2007, 46, 2070–2073. DOI: 10.1002/chin.200727105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.