Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 13
275
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

TEMPO/CuI synergetic catalyzed oxidative cross-coupling of indoles with benzylamines: Synthesis of bis(indolyl)phenylmethanes

, &
Pages 1694-1700 | Received 12 Feb 2018, Published online: 08 Jun 2018

References

  • (a) Kam, T. S. Alkaloids. In Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: Amsterdam, 1999; Vol. 4, pp 429; (b) Irie, T.; Kubushirs, K.; Suzuki, K.; Tsukazaki, K.; Umezawa, K.; Nozawa, S. Inhibition of Attachment and Chemotactic Invasion of Uterine Endometrial Cancer Cells by a New Vinca Alkaloid, Conophylline. Anticancer Res. 1999, 19, 3061–3066; (c) Amino, N.; Ohse, T.; Koyano, T.; Umezawa, K. Inhibition of Cellular Chemotactic Invasion by a Vinca Alkaloid, Conophylline. Anticancer Res. 1996, 16, 55–59; (d) Umezawa, K.; Ohse, T.; Koyano, T.; Takahashi, Y. Isolation of a New Vinca Alkaloid from the Leaves of Ervatamia microphylla as an Inhibitor of Ras Functions. Anticancer Res. 1994, 14, 2413–2417; (e) Morris, S. A.; Anderson, R. J. Brominated Bis(indole) Alkaloids from the Marine Sponge Hexadella sp. Tetrahedron 1990, 46, 715–720; (f) Bifulco, G.; Bruno, I.; Riccio, R.; Lavayre, J.; Bourdy, G. Further Brominated Bis- and Tris-Indole Alkaloids from the Deep-Water New Caledonian Marine Sponge Orina sp. J. Nat. Prod. 1995, 58, 1254–1260.
  • (a) Chakrabarty, M.; Basak, R.; Harigaya, Y. A Sojourn in the Synthesis and Bioactivity of Diindolylalkanes. Heterocycles 2001, 55, 2431–2447; (b) Benabadji, S. H.; Wen, R.; Zheng, J.; Dong, X.; Yuan, S. Anticarcinogenic and Antioxidant Activity of Diindolylmethane Derivatives. Acta Pharmacol. Sin. 2004, 25, 666–671; (c) Hong, C.; Firestone, G. L.; Bjeldanes, L. F. Bcl-2 Family-Mediated Apoptotic Effects of 3,3′-Diindolylmethane (DIM) in Human Breast Cancer Cells. Biochem. Pharmacol. 2002, 63, 1085–1097.
  • Ji, S.-J.; Zhou, M.-F.; Gu, D.-J.; Jiang, Z.-Q.; Loh, T.-P. Efficient Fe(III)-Catalyzed Synthesis of Bis(indolyl)methanes in Ionic Liquids. Eur. J. Org. Chem. 2004, 1584, 1587.
  • (a) Reddy, A. V.; Ravinder, K.; Reddy, V. L. N.; Goud, T. V.; Ravikanth, V.; Venkateswarlu, Y. Zeolite Catalyzed Synthesis of Bis(indolyl)methanes. Synth. Commun. 2003, 33, 3687–3694; (b) Mahadevan, A.; Sard, H.; Gonzalez, M.; McKew, J. C. A General Method for C3 Reductive Alkylation of Indoles. Tetrahedron Lett. 2003, 44, 4589–4591; (c) Roomi, M.; MacDonald, S. Reductive C-alkylation. Ⅱ. Can. J. Chem. 1970, 48, 139–143; (d) Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Silica Supported Sodium Hydrogen Sulfate and Amberlyst-15: Two Efficient Heterogeneous Catalyst for Facile Synthesis of Bis- and Tris(1H-indol-3-yl)methanes from Indoles and Carbonyl Compounds. Adv. Synth. Catal. 2003, 345, 557–559.
  • (a) Chen, D.-P.; Yu, L.-B.; Wang, P.-G. Lewis Acid-Catalyzed Reactions in Protic Media. Lanthanide-Catalyzed Reactions of Indoles with Aldehydes or Ketones. Tetrahedron Lett. 1996, 37, 4467–4470; (b) Nagarajan, R.; Perumal, P. T. Incl3 and In(OTf)3 Catalyzed Reactions: Synthesis of 3-Acetyl Indoles, Bis-Indolylmethane and Indolylquinoline Derivatives. Tetrahedron 2002, 58, 1229–1232; (c) Mi, X. L.; Luo, S.-Z.; He, J.-Q.; Cheng, J.-P. Dy(OTf)3 in Ionic Liquid: An Efficient Catalytic System for Reactions of Indole with Aldehydes/Ketones or Imines. Tetrahedron Lett. 2004, 45, 4567–4570.
  • Yadav, J. S.; Reddy, B. V. S.; Murthy, C. V. S. R.; Kumar, G. M.; Madan, C. Lithium Perchlorate Catalyzed Reactions of Indoles: An Expeditious Synthesis of Bis(indolyl) Methanes. Synthesis-Stuttgart 2001, 5, 783–787.
  • Nagarajan, R.; Perumal, P. T. Electrophilic Substitution of Indoles Catalyzed by Triphenyl Phosphonium Perchlorate: Synthesis of 3-Acetyl Indoles and Bis-Indolylmethane Derivatives. Synth. Commun. 2002, 32, 105–109.
  • Bandgar, B. P.; Shaikh, K. A. Molecular Iodine-Catalyzed Efficient and Highly Rapid Synthesis of Bis(indolyl)Methanes Under Mild Conditions. Tetrahedron Lett. 2003, 44, 1959–1961.
  • For reviews on the application of TEMPO and its derivatives in organic synthesis, see: (a) Sheldon, R. A.; Arends, I. W. C. E.; Brink, G. J. T.; Dijksman, A. Green, Catalytic Oxidations of Alcohols. Acc. Chem. Res. 2002, 35, 774–781; (b) Sheldon, R. A.; Arends, I. W. C. E. Organocatalytic Oxidations Mediated by Nitroxyl Radicals. Adv. Synth. Catal. 2004, 346, 1051–1071; (c) Bobbitt, J. M.; Bruckner, C.; Merbouh, N. Oxoammonium and Nitroxide-Catalyzed Oxidations of Alcohols. Org. React. 2009, 74, 103–425; (d) Hu, M.; Song, R. J.; Li, J. H. Metal-Free Radical 5-exo-Dig Cyclizations of Phenol-Linked 1,6-Enynes for the Synthesis of Carbonylated Benzofurans. Angew. Chem., Int. Ed. 2015, 54, 608–622; (e) Tebben, L.; Studer, A. Nitroxides: Applications in Synthesis and in Polymer Chemistry. Angew. Chem. Int. Ed. 2011, 50, 5034–5068; (f) Ciriminna, R.; Pagliaro, M. Industrial Oxidations with Organocatalyst TEMPO and Its Derivatives. Org. Process Res. & Dev. 2010, 14, 245–251; (g) Garcia-Mancheno, O.; Stopka, T. TEMPO Derivatives as Alternative Mild Oxidants in Carbon-Carbon Coupling Reactions. Synthesis 2013, 45, 1602–1611; (h) Zhou, Z.-G.; Liu, L.-X. TEMPO and Its Derivatives: Synthesis and Applications. Curr. Org. Chem. 2014, 18, 459–474.
  • (a) Bolm, C.; Magnus, A. S.; Hildebrand, J. P. Catalytic Synthesis of Aldehydes and Ketones Under Mild Conditions Using TEMPO/Oxone. Org. Lett. 2000, 2, 1173–1175; (b) DeLuca, L.; Giacomelli, G.; Porcheddu, A. A Very Mild and Chemoselective Oxidation of Alcohols to Carbonyl Compounds. Org. Lett. 2001, 3, 3041–3043.
  • (a) Miller, R. A.; Hoerrner, R. S. Iodine as a Chemoselective Reoxidant of TEMPO: Application to the Oxidation of Alcohols to Aldehydes and Ketones. Org. Lett. 2003, 5, 285–287; (b) Zhao, M. M.; Li, J.; Mano, E.; Song, Z. J.; Tschaen, D. M. Oxidation of Primary Alcohols to Carboxylic Acids with Sodium Chlorite Catalyzed by TEMPO and Bleach: 4-Methoxyphenylacetic Acid. Org. Synth. 2005, 81, 195–203.
  • For reviews on aerobic oxidations, see: (a) Piera, J.; Bäckvall, J.-E. Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer – A Biomimetic Approach. Angew. Chem., Int. Ed. 2008, 47, 3506–3523; (b) Schultz, M. J.; Sigman, M. S. Recent Advances in Homogeneous Transition Metal-Catalyzed Aerobic Alcohol Oxidations. Tetrahedron 2006, 62, 8227–8241.
  • (a) Ji, S.-J.; Wang, S.-Y.; Zhang, Y.; Loh, T.-P. Facile Synthesis of Bis(indolyl)methanes Using Catalytic Amount of Iodine at Room Temperature Under Solvent-Free Conditions. Tetrahedron 2004, 60, 2051–2055; (b) Gopalaiah, K.; Chandrudu, S. N.; Devi, A. Iron-Catalyzed Oxidative Coupling of Benzylamines and Indoles: Novel Approach for Synthesis of Bis(indolyl)methanes. Synthesis 2015, 47, 1766–1774.
  • Li, J.; Zhou, M.; Li, B.-G.; Zhang, G.-L. Synthesis of Triindolylmethanes Catalyzed by Zeolites. Synth. Commun. 2004, 34, 275–280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.