Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 14
264
Views
6
CrossRef citations to date
0
Altmetric
Synthetic Communications Review

Condensation reactions of indole with acetophenones affording mixtures of 3,3-(1-phenylethane-1,1-diyl)bis(1H-indoles) and 1,2,3,4-tetrahydro-3-(1H-indol-3-yl)-1-methyl-1,3-diphenylcyclopent[b]indoles

ORCID Icon, , , , , & show all
Pages 1755-1765 | Received 18 Jan 2018, Published online: 11 Jun 2018

References

  • Gul, W.; Hamann, M. Indole Alkaloid Marine Natural Products: An Established Source of Cancer Drug Leads with Considerable Promise for the Control of Parasitic, Neurological and Other Diseases. Life Sci. 2005, 78, 442–453.
  • Pindur, U.; Lemster, T. Advances in Marine Natural Products of the Indole and Annelated Indole Series: Chemical and Biological Aspects. Curr. Med. Chem. 2001, 8, 1681–1698.
  • Sundberg, R. J.; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. S. Indoles; Academic Press: London, 1996.
  • Gribble, G. W. Recent Developments in Indole Ring Synthesis: Methodology and Applications. J. Chem. Soc., Perkin Trans. 1. 2000, 7, 1045–1075.
  • He, L.; Chang, H.-X.; Chou, T.-C.; Savaraj, N.; Cheng, C. C. Design of Antineoplastic Agents Based on the ‘2-Phenylnaphthalenetype' Structural Pattern/Synthesis and Biological Activity Studies of 11H-Indolo[3.2-c]Quinoline Derivatives. Eur. J. Med. Chem. 2003, 38, 101–107.
  • Kuo, C.-C.; Hsieh, H.-P.; Pan, W.-Y.; Chen, C.-P.; Liou, J.-P.; Lee, S.-J.; Chang, Y.-L.; Chen, L.-T.; Chen, C.-T.; Chang, J.-Y. BPR0L075, a Novel Synthetic Indole Compound with Antimitotic Activity in Human Cancer Cells, Exerts Effective Antitumoral Activity in Vivo. Cancer Res. 2004, 64, 4621–4628.
  • Noland, W. E.; Wahlstrom, M. J.; Konkel, M. J.; Brigham, M. E.; Trowbridge, A. G.; Konkel, L. M. C.; Gourneau, R. P.; Scholten, C. A.; Lee, N. H.; Condoluci, J. J.; et al. In Situ Vinylindole Synthesis. Diels-Alder Reactions with Maleimides to Give Tetrahydrocarbazoles. J. Heterocycl. Chem. 1993, 30, 81–91.
  • Fischer, E. Ueber das Methylketol. Liebigs. Ann. Chem. 1887, 242, 372–383.
  • El Sayed, M. T.; Ahmed, K. M.; Mahmoud, K.; Hilgeroth, A. Synthesis, Cytostatic Evaluation and Structure Activity Relationships of Novel Bis-Indolylmethanes and Their Corresponding Tetrahydroindolocarbazoles. Eur. J. Med. Chem. 2015, 90, 845–859.
  • Gray, A. P.; Archer, W. L. The Pyridylethylation of Indole and Related Reactions. J. Am. Chem. Soc. 1957, 79, 3554–3559.
  • Kamal, A.; Qureshi, A. A. Syntheses of Some Substituted Di-Indolyl-Methanes in Aqueous Medium at Room Temperature. Tetrahedron. 1963, 19, 513–520.
  • Singh, H.; Singh, K. Carbon Transfer Reactions with Heterocycles-IV: Synthetic Equivalence of Perhydrooxazines with Carbonyl Compounds. A Facile Synthesis of Streptindole and Analogues. Tetrahedron. 1988, 44, 5897–5904.
  • Chakrabarty, M.; Basak, R.; Harigaya, Y. A Sojourn in the Synthesis and Bioactivity of Diindolylalkanes. Heterocycles. 2001, 55, 2431–2447, and references cited therein.
  • Fahy, E.; Potts, B. C. M.; Faulkner, D. J.; Smith, K. 6-Bromotryptamine Derivatives from the Gulf of California Tunicate Didemnum candidum. J. Nat. Prod. 1991, 54, 564–569.
  • Bell, R.; Carmeli, S.; Sar, N. Vibrindole A, a Metabolite of the Marine Bacterium, Vibrio parahaemolyticus, Isolated from the Toxic Mucus of the Boxfish Ostracion cubicus. J. Nat. Prod. 1994, 57, 1587–1590.
  • Bifulco, G.; Bruno, I.; Riccio, R.; Lavayre, J.; Bourdy, G. Further Brominated Bis- and Tris-Indole Alkaloids from the Deep-Water New Caledonian Marine Sponge Orina Sp. J. Nat. Prod. 1995, 58, 1254–1260.
  • Garbe, T. R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. Indolyl Carboxylic Acids by Condensation of Indoles with α-Keto Acids. J. Nat. Prod. 2000, 63, 596–598.
  • Porter, J. K.; Bacon, C. W.; Robbins, J. D.; Himmelsbach, D. S.; Higman, H. C. Indole Alkaloids from Balansia epichloë (Weese). J. Agric. Food Chem. 1977, 25, 88–93.
  • Hong, C.; Firestone, G. L.; Bjeldanes, L. F. Bcl-2 Family-Mediated Apoptotic Effects of 3,3′-Diindolylmethane (DIM) in Human Breast Cancer Cells. Biochem. Pharmacol. 2002, 63, 1085–1097.
  • Rahimia, M; Huanga, K.-L.; Tang, C. K. 3,3′-Diindolylmethane (DIM) Inhibits the Growth and Invasion of Drug-Resistant Human Cancer Cells Expressing EGFR Mutants. Cancer Lett. 2010, 295, 59–68.
  • Osawa, T.; Namiki, M. Structure Elucidation of Streptindole, a Novel Genotoxic Metabolite Isolated from Intestinal Bacteria. Tetrahedron Lett. 1983, 24, 4719–4722.
  • Opperman, T. J.; Kwasny, S. M.; Li, J. B.; Lewis, M. A.; Aiello, D.; Williams, J. D.; Peet, N. P.; Moir, D. T.; Bowlin, T. L.; Long, E. C. DNA Targeting as a Likely Mechanism Underlying the Antibacterial Activity of Synthetic Bis-Indole Antibiotics. Antimicrob. Agents Chemother. 2016, 60, 7067–7076.
  • Scholtz, M. Über die Einwirkung aliphatischer Ketone auf Indol und seine Homologen and über polymere Indole. Ber. Dtsch. Chem. Ges. 1913, 46, 1082–1089.
  • Bergman, J.; Högberg, S.; Lindström, J.-O. Macrocyclic Condensation Products of Indole and Simple Aldehydes. Tetrahedron. 1970, 26, 3347–3352.
  • Bergman, J. Condensation of Indole and Formaldehyde in the Presence of Air and Sensitizers: A Facile Synthesis of Indolo [3.2-b] Carbazole. Tetrahedron. 1970, 26, 3353–3355.
  • Bergman, J.; Norrby, P.-O.; Tilstam, U.; Venemalm, L. Structure Elucidation of Some Products Obtained by Acid-Catalyzed Condensation of Indole with Acetone. Tetrahedron. 1989, 45, 5549–5564.
  • Noland, W. E.; Richards, C. G.; Desai, D. S.; Venkiteswaran, M. R. Cyclizative Condensations. III. Indole and 1-Methylindole with Methyl Ketones. J. Org. Chem. 1961, 26, 4254–4262.
  • Noland, W. E.; Venkiteswaran, M. R. Cyclizative Condensations. IV. 3,3'-Alkylidenebisindoles from Methyl Ketones and Their Conversion to Indolo[2,3-b]Carbazoles. J. Org. Chem. 1961, 26, 4263–4269.
  • Banerji, J.; Chatterjee, A.; Manna, S.; Pascard, C.; Prange, T.; Shoolery, J. N. Lewis Acid Induced Electrophilic Substitution of Indole: Part 3. Heterocycles. 1981, 15, 325–326.
  • Banerji, J.; Mustafi, R.; Shoolery, J. N. Lewis Acid Induced Electrophilic Substitution of Indoles: Part 6. Heterocycles. 1982, 20, 1355–1362.
  • Banerji, J.; Saha, R.; Manna, A. P.; Shoolery, J. N.; Prange, T.; Pascard, C. Electrophilic Substitution of Indoles. Part IV Addition & Annulation Reactions with Mesityl Oxide. Indian J. Chem. 1982, 21B, 83–87.
  • Banerji, J.; Saha, M.; Kanrar, S.; Chakrabarti, R.; Grover, N. J. Lewis Acid-Catalyzed Electrophilic Substitution of Indoles: Part XIII – Reaction of Indole with Phorone. Indian J. Chem. 1993, 32B, 730–732.
  • Guzei, I. A.; Spencer, L. C.; Codner, E.; Boehm, J. M. 5′,11′-Dihydrodispiro[Cyclohexane-1,6′-Indolo[3,2-b]Carbazole-12′,1′′-Cyclohexane]. Acta Crystallogr. Sect. E. 2012, 68, o1–o2.
  • Noland, W. E.; Venkiteswaran, M. R.; Richards, C. G. Cyclizative Condensations. I. 2-Methylindole with Acetone and Methyl Ethyl Ketone. J. Org. Chem. 1961, 26, 4241–4248.
  • Noland, W. E.; Venkiteswaran, M. R.; Lovald, R. A. Cyclizative Condensations. II. 2-Methylindole with Methyl Ketones. J. Org. Chem. 1961, 26, 4249–4254.
  • Zhu, Y.-P.; Liu, M.-C.; Jia, F.-C.; Yuan, J.-J.; Gao, Q.-H.; Lian, M.; Wu, A.-X. Metal-Free sp3 C-H Bond Dual-(Het)arylation: I2-Promoted Domino Process to Construct 2,2-Bisindolyl-1-Arylethanones. Org. Lett. 2012, 14, 3392–3395.
  • Tabatabaeian, K.; Mamaghani, M.; Mahmoodi, N.; Khorshidi, A. Efficient RuIII-Catalyzed Condensation of Indoles and Aldehydes or Ketones. Can. J. Chem. 2006, 84, 1541–1545.
  • Li, J.-T.; Sun, S.-F. Synthesis of Diindolylmethanes (DIMs) Catalyzed by Silicotungstic Acid by Grinding Method. E- J. Chem. 2010, 7, 922–926.
  • Kumar, G. S.; Kumar, A. S.; Swetha, A.; Babu, B. M.; Meshram, H. M. An Unexpected C-C Bond Cleavage of Acetophenones: Synthesis of Bis(Heteroaryl)Arylmethanes and Triarylmethanes via SeO2/Lanthanide Chloride Catalyzed Friedel–Crafts Arylation. Synlett. 2016, 27, 631–639.
  • Zolfigol, M. A.; Salehi, P.; Shiri, M. An Efficient Procedure for the Preparation of Mono, and Di-Bis-Indolylmethanes Catalyzed by Molibdatophosphoric Acid. Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179, 2273–2277.
  • Eitel, M.; Pindur, U. Reactions of 2-Vinylindoles with Carbodienophiles: Synthetic and Mechanistic Aspects. J. Org. Chem. 1990, 55, 5368–5374.
  • Schollmeyer, D.; Fischer, G.; Pindur, U. Dimeric 3-Vinylindoles as Potential Antitumor Active Compounds: 1,1,3,4-Tetramethyl-3-(1-Methyl-1H-Indol-3-yl)-1,2,3,4-Tetrahydrocyclopenta[b]Indole and 1,1,3-Trimethyl-4-Phenylsulfonyl-3-(1-Phenylsulfonyl-1H-Indol-3-yl)-1,2,3,4-Tetrahydrocyclopenta[b]Indole. Acta Cryst. 1995, C51, 2572–2575.
  • Xu, B.; Guo, Z.-L.; Jin, W.-Y.; Wang, Z.-P.; Peng, Y.-G.; Guo, Q.-X. Multistep One-Pot Synthesis of Enantioenriched Polysubstituted Cyclopent[b]indoles. Angew. Chem. Int. Ed. 2012, 51, 1059–1062.
  • Black, D. C.; Craig, D. C.; Kumar, N. Acid-Catalyzed Reactions of Activated Indoles with Methyl Ketones. Tetrahedron Lett. 1991, 32, 1587–1590.
  • Ferrer, C.; Amijs, C. H. M.; Echavarren, A. Intra- and Intermolecular Reactions of Indoles with Alkynes Catalyzed by Gold. M. Chem. Eur. J. 2007, 13, 1358–1373.
  • Luo, C.; Yang, H.; Mao, R.; Lu, C.; Cheng, G. An Efficient Au(I) Catalyst for Double Hydroarylation of Alkynes with Heteroarenes. New J. Chem. 2015, 39, 3417–3423.
  • Csũrös, Z.; Kálmán, V.; Lengyel-Mézáros, Á.; Petró, J. Study of the Correlation between Structure and Reducibility of Acetophenone Derivatives: I. The Validity of the Hammett Equation in the Meerwein-Ponndorf-Verley Reduction of Acetophenone Derivatives. Period. Polytech., Chem. Eng. 1968, 12, 161–179.
  • DeKruif, R. D. Condensation Reactions of Indole with Acetophenones: Substituent Effects and Reaction Conditions. MS Thesis, University of Minnesota, 1982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.