Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 14
185
Views
4
CrossRef citations to date
0
Altmetric
Synthetic Communications Review

Preparation of bicyclic β-lactam and bicyclic 1,3-oxazinone scaffolds using combined cycloaddition and metathesis processes

, &
Pages 1793-1804 | Received 01 Mar 2018, Published online: 11 Jun 2018

References

  • (a) Dougherty, T. J.; Pucci, M. J. Antibiotic Discovery and Development, Springer: New York, 2012. (b) Morin, R. B.; Gorman, M. Chemistry and Biology of β-Lactam Antibiotics, Academic Press: New York, 1982.
  • Torok, M. E.; Moran, E.; Cooke, F. Oxford Handbook of Infectious Diseases and Microbiology, 1st ed.; Oxford University Press: New York, 2009.
  • Staudinger, H. Zur Kenntniss der Ketene. Diphenylketen. Justus Liebigs Ann. Chem. 1907, 356, 51–123.
  • Bruggink, A. Synthesis of β-lactam Antibiotics: Chemistry, Biocatalysis and Process Integration; Kluwer Academic Publishers: Dordrecht, 2001.
  • (a) Curran, W. V.; Ross, A. A.; Lee, V. J. N-azamonobactams. 1. The Synthesis of Some 3-Substituted N-Azamonobactam Derivatives. J. Antibiot. 1988, 41, 1418–1429;(b) Indelicato, J. M.; Fisher, J. W.; Pasini, C. E. Intramolecular Nucleophilic Amino Attack in a Monobactam: Synthesis and Stability of (2S,3S)- 3-[(2R)-2-Amino-2-Phenylacetamido]-2-Methyl-4-Oxo-1-Azetidine Sulfonic Acid. J. Pharm. Sci. 1986, 75, 304–306.
  • (a) Gupta, E. K.; Ito, M. K. Ezetimibe: The First in a Novel Class of Selective Cholesterol-Absorption Inhibitors. Heart Dis. 2002, 4, 399–409; (b) Clader, J. W. The Discovery of Ezetimibe: A View from Outside the Receptor. J. Med. Chem. 2004, 47, 1–9; (c) Rosenblum, S. B.; Huynh, T.; Afonso, A.; Davis, H. R.; Yumibe, N.; Clader, J. W.; Burnett, D. A. Discovery of 1-(4-Fluorophenyl)-(3R)-[3-(4-Fluorophenyl)-(3S)-Hydroxypropyl]-(4S)-(4-Hydroxyphenyl)-2-Azetidinone (SCH 58235): A Designed, Potent, Orally Active Inhibitor of Cholesterol Absorption. J. Med. Chem. 1998, 41, 973–980.
  • Karlsson, S.; Sorensen, J. H.; Selection and Development of a Route for Cholesterol Absorption Inhibitor AZD4121. Org. Process Res. Dev. 2012, 16, 586–594.
  • Kramer, W.; Corsiero, D.; Girbig, F.; Jähne, G. Rabbit Small Intestine Does Not Contain an Annexin II/Caveolin 1 Complex as a Target for 2-Azetidinone Cholesterol Absorption Inhibitors. Biochim. Biophys. Acta. 2006, 1, 45–54.
  • Salisbury, B. G.; Davis, H. R.; Burrier, R. E.; Burnett, D. A.; Boykow, G.; Caplen, M. A.; Clemmons, A. L.; Compton, D. S.; Hoos, L. M.; McGregor, D. G.; et al. Hypocholesterolemic Activity of a Novel Inhibitor of Cholesterol Absorption, SCH 48461. Atherosclerosis, 1995, 115, 45–63.
  • (a) Grieco, P. A; Flynn, D. L.; Zelle, R. E. Beta.-Lactam Antibiotics: A Formal Stereocontrolled Total Synthesis of (.+-.)-thienamycin. J. Am. Chem. Soc. 1984, 106, 6414–6417; (b) Kametani, T.; Chu, S. D.; Honda, T. Asymmetric Synthesis of 4-Acetoxy-3-hydroxyethylazetidin-2-one, a Key Intermediate for the Preparation of Penem and Carbapenem Antibiotics. Heterocycles 1987, 25, 241–244; (c) Ito, K.; Iida, T.; Fujita, T.; Tsjui, S. A Simple Method for the Synthesis of Amides by Use of 2,2′-Dibenzothiazolyl Disulfide as an Oxidant. Synthesis 1981, 4, 287–288; (d) Palomo, C.; Azipurua, J. M.; Urchegui. R.; Iturburu, M.; Ochoa de Retana, A.; Cuevas. C. A Convenient Method for Beta-Lactam Formation from Beta-Amino acids Using Phenyl Phosphorodichloridate Reagent. J. Org. Chem. 1991, 56, 2244–2247.
  • (a) Gilman, H.; Speeter, M. The Reformatsky Reaction with Benzalaniline. J. Am. Chem. Soc. 1943, 65, 2255–2256; (b) Ojima, I.; Habus, I.; Zhao, M.; Georg, G. I.; Jayasinghe, L.R. Efficient and Practical Asymmetric Synthesis of the Taxol C-13 Side Chain, N-benzoyl-(2R,3S)-3-Phenylisoserine, and Its Analogs Via Chiral 3-Hydroxy-4-Aryl-Beta-Lactams Through Chiral Ester Enolate-Imine Cyclocondensation. J. Org. Chem. 1991, 56, 1681–1683; (c) Hart, D. J.; Ha, D-C. The Ester Enolate-Imine Condensation Route to Beta-Lactams. Chem. Rev. 1989, 89, 1447–1465; (d) Ojima, I.; Habus, I. Asymmetric Synthesis of β-Lactams by Chiral Ester Enolate – Imine Condensation. Tetrahedron Lett. 1990, 31, 4289–4292; (e) Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y.; Sun, C.; Brigaud, T. New and Efficient Approaches to the Semisynthesis of Taxol and its C-13 Side Chain Analogs by Means of β-Lactam Synthon Method. Tetrahedron 1992, 48, 6985–7012; (f) Ojima, I.; Habus, I.; Zhao, M. Efficient and Practical Asymmetric Synthesis of the Taxol C-13 Side Chain, N-benzoyl-(2R,3S)-3-Phenylisoserine, and its Analogs Via Chiral 3-Hydroxy-4-Aryl-Beta-Lactams Through Chiral Ester Enolate-Imine Cyclocondensation. J. Org. Chem. 1991, 56, 1681–1683; (g) Ojima, I.; Slater, J. S.; Kuduk, S. D.; Takeuchi, C. S.; Gimi, R. H.; Sun, C. M.; Park, Y. H.; Pera, P.; Veith, J. M.; Bernacki, R. J. Syntheses and Structure − Activity Relationships of Taxoids Derived from 14β-Hydroxy-10-deacetylbaccatin III J. Med. Chem. 1997, 40, 267–278.
  • (a) Kinugasa, M.; Hashimot, S. The Reactions of Copper(I) Phenylacetylide with Nitrones. J. Chem. Soc. Chem. Commun. 1972, 8, 466–467; (b) Stecko, S.; Furman, B.; Chmielewski, M. Kinugasa Reaction: An ‘Ugly Duckling’ of β-lactam Chemistry Tetrahedron 2014, 70, 7817–7844.
  • Chmielewski, M.; Kałuza, Z.; Abramski, W.; Bełzacki C. Stereocontrolled Entry to 1-Oxapenams and 1-Oxacephems from Carbohydrates. Tetrahedron Lett. 1987, 28, 3035–3038.
  • (a) Kamath, A.; Ojima, I. Advances in the Chemistry of β-Lactam and its Medicinal Applications. Tetrahedron 2012, 68, 10640–10664; (b) Mendez, L.; Mata, E. G. Synthesis of Multicyclic β-Lactam Derivatives via Solid-Phase-Generated Ketenes. J. Comb. Chem. 2010, 12, 810–813; (c) Jiao, L.; Zhang, Q.; Liang, Y.; Zhang, S.; Xu, J. A Versatile Method for the Synthesis of 3-Alkoxycarbonyl β-Lactam Derivatives J. Org. Chem. 2006, 71, 815–818; (d) Xu, J. Synthesis of β-Lactams with π Electron-Withdrawing Substituents. Tetrahedron 2012, 68, 10696–10747; (e) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis of β-Lactams. J. Am. Chem. Soc. 2002, 124, 6626–6635; (e) McKittrick, B. A.; Ma, K.; Huie, K.; Yumibe, N.; Davis, H.; Clader, J. W.; Czarnecki, M.; McPhail A. T. Synthesis of C3 Heteroatom-Substituted Azetidinones That Display Potent Cholesterol Absorption Inhibitory Activity. J. Med. Chem. 1998, 41, 752–759; (f) Li, B.; Wang, Y.; Du, D. M.; Xu, J. Notable and Obvious Ketene Substituent-Dependent Effect of Temperature on the Stereoselectivity in the Staudinger Reaction. J. Org. Chem. 2007, 72, 990–997; (g) Nahmany, M.; Melman, A. Simple Approach to β-Lactam Derivatives from N-Acylimidazoles. J. Org. Chem. 2006, 71, 5804–5806.
  • (a) Janikowska, K.; Pawelska, P.; Makowiec, S. One-Step Synthesis of β-Lactams with Retro-Amide Side Chain. Synthesis 2011, 1, 69–72; (b) Zakaszewska, A.; Najda, E.; Makowiec, S. The stereoselective Formation of β-Lactams with Acyl Ketenes Generated from 5-Acyl-Meldrum's Acids. New. J. Chem. 2016, 40, 6546–6549; (c) Zakaszewska, A.; Najda-Mocarska, E.; Makowiec, S.; Evidence for an Umpolung Type of [2 + 2] Cycloaddition of 2-Carbamoyl Ketenes. New. J. Chem. 2017, 41, 6067–6070; (d) Zakaszewska, A.; Najda-Mocarska, E.; Makowiec, S. A New Approach to the Stereoselective Synthesis of Trans-3-Carbamoyl-Β-Lactam Moieties. New. J. Chem. 2017, 41, 2479–2489.
  • Yamamoto, Y.; Watanabe, Y. 1,3-Oxazines and Related Compounds. XIV. Facile Synthesis of 2,3,6-Trisubstituted 2,3-Dihydro-1,3-oxazine-5-carboxylic Acids and 1,4-Disubstituted 3-Acyl-β-lactams from Acyl Meldrum's Acids and Schiff Bases Chem. Pharm. Bull. 1987, 35, 1871–1878.
  • Emtenäs, H.; Soto, G.; Hultgren, S. J.; Marshall, G. R.; Almqvist, F. Stereoselective Synthesis of Optically Active Beta-Lactams, Potential Inhibitors of Pilus Assembly in Pathogenic Bacteria. Org. Lett. 2000, 2, 2065–2067.
  • Pemberton, N.; Emtenäs, H.; Boström, D.; Domaille, P. J.; Greenberg, W. A.; Levin, M. D.; Zhu, Z.; Almqvist, F. Cycloaddition of Delta2-Thiazolines and Acyl Ketenes Under Acidic Conditions Results in Bicyclic 1,3-Oxazinones and Not 6-Acylpenams As Earlier Reported. Org. Lett. 2005, 7, 1019–1021.
  • (a) Emtenäs, H.; Alderin, L.; Almqvist, F. An Enantioselective Ketene-Imine Cycloaddition Method for Synthesis of Substituted Ring-Fused 2-Pyridinones. J. Org. Chem. 2001, 66, 6756–6761; (b) Pemberton, N.; Aberg, V.; Almstesdt, H.; Westermark, A.; Almqvist, F. Microwave-Assisted Synthesis of Highly Substituted Aminomethylated 2-Pyridones. J. Org. Chem. 2004, 69, 7830–7835; (c) Emtenäs, H.; Carlsson, M.; Pinkner, S. J.; Hultgren S. J.; Almqvist, F. Stereoselective Synthesis of Optically Active Bicyclic Beta-Lactam Carboxylic Acids That Target Pilus Biogenesis in Pathogenic Bacteria. Org. Biomol. Chem. 2003, 1, 1308–1314; (d) Chorell, E.; Pinkner, J. S.; Phan, G.; Edvinsson, S.; Buelens, F.; Remaut, H.; Waksman, G.; Hultgren, S. J.; Almqvist, F. Design and Synthesis of C-2 Substituted Thiazolo and Dihydrothiazolo Ring-Fused 2-Pyridones: Pilicides with Increased Antivirulence Activity. J. Med. Chem. 2010, 53, 5690–5695; (e) Emtenäs, H.; Pinkner, S. J.; Jones, M. J.; Jakobsson, L.; Hultgren, S. J.; Almqvist, F. Functionalization of Bicyclic 2-Pyridones Targeting Pilus Biogenesis in Uropathogenic Escherichia coli. Tetrahedron Lett. 2007, 48, 4543–4546.
  • (a) Yamamoto, Y.; Watanabe, Y.; Ohnishi, S. 1, 3-Oxazines and Related Compounds. XIII. Reaction of Acyl Meldrum's Acids with Schiff Bases Giving 2, 3-Disubstituted 5-Acy1-3, 4, 5, 6-tetrahydro-2H-1, 3-oxazine-4, 6-diones and 2, 3, 6-Trisubstituted 2, 3-Dihydro-1, 3-oxazin-4-ones. Chem. Pharm. Bull. 1987, 35, 1860–1870; (b) Makowiec, S.; Najda, E.; Janikowska, K. Thermal Decomposition of Carbamoyl Meldrum’s Acids: A Starting Point for the Preparation of 1,3-Oxazine Derivatives. J. Heterocycl. Chem. 2015, 52, 205–210.
  • Punda, P.; Makowiec, S. One-Step Formation of N-Alkenyl-malonamides and N-Alkenyl-thiomalonamides from Carbamoyl Meldrum's Acids. Synth. Commun. 2013, 43, 1362–1367.
  • (a) De Kimpe, N.; De Smaele, D.; Hofkens, A.; Dejaegher, Y.; Kesteleyn, B. Synthesis of 3-Alkenylamines, 4-Alkenylamines and 3-Allenylamines Via a Transamination Procedure. Tetrahedron 1997, 53, 10803–10816; (b) Smith, J. K.; Bergbreiter, D. E.; Newcomb, M. Formation and isomerization of 2-Azaallyllithium Reagents in Deprotonations of N-Benzyl Ketimines Containingα-protons. J. Org. Chem. 1985, 50, 4549–4553.
  • (a) Tarling, C. A.; Holmes, A. B.; Markwell, R. E.; Pearson, N. D. β-, γ- and δ-Lactams as Conformational Constraints in Ring-Closing Metathesis. J. Chem. Soc., Perkin Trans. 1 1999, 1695–1702; (b) Barrett, A. G. M.; Baugh, S. P. D.; Braddock, D. C.; Flack, K.; Gibson, V. C.; Procopiou, P. A. Enyne Metathesis for the Facile Synthesis of Highly Functionalised Novel Bicyclic Β-Lactams. Chem. Commun. 1997, 15, 1375–1376; (c) Barrett, A. G. M.; Ahmed, M.; Baker, S. P.; Baugh, S. P. D.; Braddock, D. C.; Procopiou, P. A.; White, A. J. P.; Williams, D. J. Tandem Ireland − Claisen Rearrangement Ring-Closing Alkene Metathesis in the Construction of Bicyclic β-Lactam Carboxylic Esters. J. Org. Chem. 2000, 65, 3716–3721; (d) Watson, K. D.; Carosso, S.; Miller, M. J. New and Concise Syntheses of the Bicyclic Oxamazin Core Using an Intramolecular Nitroso Diels–Alder Reaction and Ring-Closing Olefin Metathesis. Org. Lett. 2013, 15, 358–361; (e) Desroy, N.; Robert-Peillard, F.; Toueg, J.; Duboc, R.; Hénaut, Ch.; Rager, M-N.; Savignac, M.; Genêt, J-P. An Efficient Route to 4/5/6 Polycyclic β-Lactams. Eur. J. Org. Chem. 2004, 23, 4840–4849; (f) Woźnica, M.; Masnyk, M.; Stecko, S.; Mames, A.; Furman, B.; Chmielewski, M.; Frelek, J. Structure − Chiroptical Properties Relationship of Carbapenams by Experiment and Theory. J. Org. Chem. 2010, 75, 7219–7226.
  • (a) Katz, T.J.; Sivavec, T. M. Metal-Catalyzed Rearrangement of Alkene-Alkynes and the Stereochemistry of Metallacyclobutene Ring Opening. J. Am. Chem. Soc. 1985, 107, 737–738; (b) Kim, S. H.; Bowden, N.; Grubbs, R. H. Catalytic Ring Closing Metathesis of Dienynes: Construction of Fused Bicyclic Rings. J. Am. Chem. Soc. 1994, 116, 10801–10802; (c) Stragies, R.; Schuster, M.; Blechert, S. A Crossed Yne–Ene Metathesis Showing Atom Economy. Angew. Chem., Int. Ed. 1997, 36, 2518–2520.
  • Boyer, N.; Gloanec, P.; Nanteuil, G.; Jubaulta, P.; Quiriona, J. Ch. Chemoselective and Stereoselective Synthesis of Gem-Difluoro-Β-Aminoesters or Gem-Difluoro-Β-Lactams from Ethylbromodifluoroacetate and Imines During Reformatsky Reaction. Tetrahedron. 2007, 63, 12352–12366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.