Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 15
259
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

New bifunctional carbohydrate-like thiourea derivatives – design and first application in organocatalysis

, , , &
Pages 1945-1956 | Received 22 Jan 2018, Published online: 28 Jun 2018

References

  • List, B.; Maruoka, K., Eds.; Science of Synthesis: Asymmetric Organocatalysis 1 and 2, 1st ed., Thieme: Stuttgart, 2012.
  • Reviews on bifunctional thiourea catalysts: (a) Held, F. E.; Tsogoeva, S. B. Asymmetric Cycloaddition Reactions Catalyzed by Bifunctional Thiourea and Squaramide Organocatalysts: Recent Advances. Catal. Sci. Technol 2016, 6, 645–667; (b) Li, P.; Hu, X.; Dong, X.-Q.; Zhang, X. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)Urea- and Squaramide-Based Organocatalysts. Molecules. 2016, 21, 1327; (c) Volla, C. M. R.; Atodiresei, L.; Rueping, M. Catalytic C-C Bond-Forming Multi-Component Cascade or Domino Reactions: Pushing the Boundaries of Complexity in Asymmetric Organocatalysis. Chem. Rev 2014, 114, 2390–2431; (d) Hof, K.; Lippert, K. M.; Schreiner, P. R. In Science of Synthesis: Asymmetric Organocatalysis 2, 1st ed., (Ed.: Maruoka, K.), Thieme: Stuttgart, 2012, pp 297–412.
  • Reviews on carbohydrate-based organocatalysts: (a) Faísca Phillips, A. M. Applications of Carbohydrate-Based Organocatalysts in Enantioselective Synthesis. Eur. J. Org. Chem. 2014, 7291–7303. (b) Agarwal, J. Progress in Aminosugar Derived Asymmetric Organocatalysis. Eur. J. Org. Chem. 2014, 10747–10762.
  • Ágoston, K.; Fügedi, P. Preparation of New Type of Organocatalysts Having a Carbohydrate Scaffold. Carbohydr. Res. 2014, 389, 50–56.
  • Shen, C.; Shen, F.; Xia, H.; Zhang, P.; Chen, X. Carbohydrate-Derived Alcohols as Organocatalysts in Enantioselective Aldol Reactions of Isatins with Ketones. Tetrahedron: Asymmetry 2011, 22, 708–712.
  • Turks, M.; Rolava, E.; Stepanovs, D.; Mishnev, A.; Markovič, D. Novel 3-C-Aminomethyl-Hexofuranose-Derived Thioureas and Their Testing in Asymmetric Catalysis. Tetrahedron: Asymmetry 2015, 26, 952–960.
  • Kong, S.; Fan, W.; Wu, G.; Miao, Z. Enantioselective Synthesis of Tertiary a-Hydroxy Phosphonates Catalyzed by Carbohydrate/Cinchona Alkaloid Thiourea Organocatalysts. Angew. Chem. Int. Ed 2012, 51, 8864–8867. Angew. Chem. 2012, 124, 8994–8997.
  • Coll, M.; Pamies, O.; Dieguez, M. Modular Hydroxyamide and Thioamide Pyranoside-Based Ligand Library from the Sugar Pool: New Class of Ligands for Asymmetric Transfer Hydrogenation of Ketones. Adv. Synth. Catal 2014, 45, 2293–2302.
  • Qiao, B.; Huang, Y. J.; Nie, J.; Ma, J. A. Highly Regio-, Diastereo-, and Enantioselective Mannich Reaction of Allylic Ketones and Cyclic Ketimines: Access to Chiral Benzosultam. Org. Lett 2015, 17, 4608–4611.
  • Carmona, J. A.; de Gonzalo, G.; Serrano, I.; Crespo-Peña, A. M.; Šimek, M.; Monge, D.; Fernández, R.; Lassaletta, J. M. Asymmetric Organocatalytic Synthesis of Tertiary Azomethyl Alcohols: Key Intermediates towards Azoxy Compounds and Alpha-Hydroxy-Beta-Amino Esters. Org. Biomol. Chem. 2017, 15, 2993–3005.
  • Azad, C. S.; Khan, I. A.; Narula, A. K. Organocatalyzed Asymmetric Michael Addition by an Efficient Bifunctional Carbohydrate-Thiourea Hybrid with Mechanistic DFT Analysis. Org. Biomol. Chem. 2016, 14, 11454–11464.
  • Andrés, J. M.; González, F.; Maestro, A.; Pedrosa, R.; Valle, M. Biodegradable Chitosan-Derived Thioureas as Recoverable Supported Organocatalysts - Application to the Stereoselective Aza-Henry Reaction. Eur. J. Org. Chem. 2017, 3658–3665.
  • (a) Helms, M.; Schade, W.; Pulz, R.; Watanabe, T.; Al-Harrasi, A.; Fiŝera, L.; Hlobilová, I.; Zahn, G.; Reissig, H.-U. Stereodivergent Syntheses of Highly Substituted Enantiopure 4-Alkoxy-3,6-Dihydro-2H-1,2-Oxazines by Addition of Lithiated Alkoxyallenes to Carbohydrate-Derived Aldonitrones. Eur. J. Org. Chem 2005, 1003–1019. (b) Schade, W.; Reissig, H.-U. A New Diastereoselective Synthesis of Enantiomerically Pure 1,2-Oxazine Derivatives by Addition of Lithiated Methoxyallene to Chiral Nitrones. Synlett. 1999, 632–634.
  • Reviews: (a) Brasholz, M.; Reissig, H.-U.; Zimmer, R. Sugars, Alkaloids and Heteroaromatics: Exploring Heterocyclic Chemistry with Alkoxyallenes. Acc. Chem. Res. 2009, 42, 45–56. (b) Pfrengle, F.; Reissig, H.-U. Amino Sugars and Their Mimetics via 1,2-Oxazines. Chem. Soc. Rev. 2010, 39, 549–557.
  • For recent contributions on functionalization of 1,2-oxazines, see: (a) Moinizadeh, N.; Klemme, R.; Kansy, M.; Zimmer, R.; Reissig, H.-U. Convenient Syntheses of Enantiopure 1,2-Oxazin-4-yl Nonaflates and Phosphates and Their Palladium-Catalyzed Cross Couplings. Synthesis. 2013, 45, 2752–2762. (b) Medvecký, M.; Linder, I.; Schefzig, L.; Reissig, H.-U.; Zimmer, R. Iodination of Carbohydrate-Derived 1,2-Oxazines to Enantiopure 5-Iodo-3,6-Dihydro-2H-1,2-Oxazines and Subsequent Palladium-Catalyzed Cross-Coupling Reactions. Beilstein J. Org. Chem. 2016, 12, 2898–2905. (c) Dekaris, V.; Reissig, H.-U. Stereocontrolled Synthesis of Enantiopure Polyhydroxylated Azetidines via 1,2-Oxazines. Synlett. 2010, 42–46. (d) Al-Harrasi, A.; Fischer, S.; Zimmer, R.; Reissig, H.-U. Ring Enlargement of Carbohydrate-Derived 1,2-Oxazines to Enantiopure 5-Bromo-1,2-Oxazepines and Subsequent Palladium-Catalyzed Reactions. Synthesis. 2010, 304–314. (e) Dekaris, V.; Pulz, R.; Al-Harrasi, A.; Lentz, D.; Reissig, H.-U. Stereoselective Syntheses of Aza, Amino and Imino Sugar Derivatives by Hydroboration of 3,6-Dihydro-2H-1,2-Oxazines as Key Reaction. Eur. J. Org. Chem. 2011, 3210–3219. (f) Jasiński, M.; Moreno-Clavijo, E.; Reissig, H.-U. Synthesis of a Series of Enantiopure Polyhydroxylated Bicyclic N-Heterocycles from an L-Erythrose-Derived Nitrone and Alkoxyallenes. Eur. J. Org. Chem. 2014, 442–454. (g) Pecchioli, T.; Cardona, F.; Reissig, H.-U.; Zimmer, R.; Goti, A. Stereodivergent Synthesis of (-)-Hyacinthacine B4, Purported (+)-Hyacinthacine C5 and Its C-5 Epimer – Expanding the Scope of Additions of Lithiated Alkoxyallenes to Cyclic Nitrones. J. Org. Chem. 2017, 82, 5835–5844.
  • (a) Bouché, L.; Reissig, H.-U. Synthesis of Novel Carbohydrate Mimetics via 1,2-Oxazines. Pure Appl. Chem. 2012, 84, 23–36. (b) Bouché, L.; Reissig, H.-U. Synthesis of Di- and Trivalent Carbohydrate Mimetics with Oxepane Substructure by Employing Copper-Catalyzed [3 + 2] Cycloadditions of Alkynes with Azidooxepanes. Eur. J. Org. Chem. 2014, 3697–3703. (c) Kandziora, M.; Reissig, H.-U. Synthesis of Rigid p-Terphenyl-Linked Carbohydrate Mimetics. Beilstein. J. Org. Chem. 2014, 10, 1749–1758. (d) Kandziora, M.; Reissig, H.-U. Preparation of Multivalent Carbohydrate Mimetics Based on Enantiopure 1,2-Oxazines by Sonogashira Coupling and Subsequent Reductive Ring-Opening. Eur. J. Org. Chem. 2015, 370–377. (e) Kandziora, M.; Mucha, E.; Zucker, S. P.; Reissig, H.-U. Syntheses of Mono- and Divalent C-Aminoglycosides Using 1,2-Oxazine Chemistry and Olefin Metathesis. Synlett. 2015, 26, 367–374. (f) Dernedde, J.; Enders, S.; Reissig, H.-U.; Roskamp, M.; Schlecht, S.; Yekta, S. Inhibition of Selectin Binding by Colloidal Gold with Functionalized Shells. Chem. Commun. 2009, 932–934. (g) Roskamp, M.; Enders, S.; Pfrengle, F.; Yekta, S.; Dekaris, V.; Dernedde, J.; Reissig, H.-U.; Schlecht, S. Multivalent Interaction and Selectivities in Selectin Binding of Functionalized Gold Colloids Decorated with Carbohydrate Mimetics. Org. Biomol. Chem. 2011, 9, 7448–7456. (h) Salta, J.; Reissig, H.-U. Synthesis of Divalent Carbohydrate Mimetics by Reductive Amination with Enantiopure 1,2-Oxazines as Precursors. Synthesis. 2015, 47, 1893–1899. (i) Salta, J.; Dernedde, J.; Reissig, H.-U. Synthesis of Multivalent Carbohydrate Mimetics with Aminopolyol End Groups and Their Evaluation as L-Selectin Inhibitors. Beilstein. J. Org. Chem. 2015, 11, 638–646.
  • Al-Harrasi, A.; Pfrengle, F.; Prisyazhnyuk, V.; Yekta, S.; Koos, P.; Reissig, H.-U. Enantiopure Aminopyrans by a Lewis Acid Promoted Rearrangement of 1,2-Oxazines: Versatile Building Blocks for Oligosaccharide and Sugar Amino Acid Mimetics. Chem. Eur. J. 2009, 15, 11632–11641.
  • Pfrengle, F.; Reissig, H.-U. Internally Protected Amino Sugar Equivalents from Enantiopure 1,2-Oxazines: Synthesis of Variably Configured Carbohydrates with C-Branched Amino Sugar Units. Chem. Eur. J. 2010, 16, 11915–11925.
  • Bouché, L.; Kandziora, M.; Reissig, H.-U. Synthesis of New Enantiopure Poly(Hydroxy)Aminooxepanes as Building Blocks for Multivalent Carbohydrate Mimetics. Beilstein J. Org. Chem. 2014, 10, 213–223.
  • For asymmetric catalysis employing thiourea catalysts having free hydroxyl groups, see: (a) Ghosh, D.; Gupta, N.; Abdi, S. H. R.; Nandi, S.; Khan, N. U. H.; Kureshy, R. I.; Bajaj, H. C. Organocatalyzed Enantioselective Allylation of Isatins by Using a Chiral Amino Alcohol Derived Squaramide as Catalyst. Eur. J. Org. Chem. 2015, 2801–2806. (b) Ren, X.; He, C.; Feng, Y.; Chai, Y.; Yao, W.; Chen, W.; Zhang, S. Novel Ferrocene-Based Bifunctional Amine-Thioureas for Asymmetric Michael Addition of Acetylacetone to Nitroolefins. Org. Biomol. Chem. 2015, 13, 5054–5060. (c) Concepción Gimeno, M.; Herrera, R. P. Hydrogen Bonding Networks in Chiral Thiourea Organocatalysts: Evidence on the Importance of the Aminoindanol Moiety. Cryst. Growth Des. 2016, 16, 5091–5099. (d) Izaga, A.; Herrera, R. P.; Concepción Gimeno, M. Gold(I)-Mediated Thiourea Organocatalyst Activation: A Synergic Effect for Asymmetric Catalysis. ChemCatChem. 2017, 9, 1313–1321. (e) ref 12.
  • For reviews on asymmetric activation, see: ( a) Mikami, K.; Terada, M.; Korenaga, T.; Matsumoto, Y.; Ueki, M.; Angelaud, R. Asymmetric Activation. Angew. Chem. 2000, 112, 3676–3701. Angew. Chem. Int. Ed, 2000, 39, 3532–3556. (b) Piovesana, S.; Scarpino Schietroma, D. M.; Bella, M. Multiple Catalysis with Two Chiral Units: An Additional Dimension for Asymmetric Synthesis. Angew. Chem. 2011, 123, 6340–6357. Angew. Chem. Int. Ed. 2011, 50, 6216–6232.
  • In a previous contribution, we reported the successful application of prolinol derivative (S)-26 in combination with a polymer-supported BINOL-titanium catalyst employed in a Mukaiyama aldol reaction leading to aldol product in high yield and with excellent enantioselectivity: Zimmer, R.; Dekaris, V.; Knauer, M.; Schefzig, L.; Reissig, H.-U. Synthesis of Poly(Ethylene Glycol)-Supported (R)-BINOL Derivatives and Their First Application in Enantioselective Mukaiyama Aldol Reactions. Synth. Commun. 2009, 39, 1012–1026.
  • Almaşi, D.; Alonso, D. A.; Gómez-Bengoa, E.; Nájera, C. Chiral 2-Aminobenzimidazoles as Recoverable Organocatalysts for the Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes. J. Org. Chem. 2009, 74, 6163–6168.
  • For a related thiourea-catalyzed aldol reaction see: Guo, Q.; Bhanushali, M.; Zhao, C.-G. Quinidine Thiourea-Catalyzed Aldol Reaction of Unactivated Ketones: Highly Enantioselective Synthesis of 3-Alkyl-3-Hydroxy-Indolin-2-Ones. Angew. Chem. 2010, 122, 9650–9654. Angew. Chem. Int. Ed. 2010, 49, 9460–9464.
  • Allu, S.; Molleti, N.; Panem, R.; Singh, V. K. Enantioselective Organocatalytic Aldol Reaction of Unactivated Ketones with Isatins. Tetrahedron Lett. 2011, 52, 4080–4083.
  • The ee value was estimate by comparison of the measured [α]D = +34 with this found in the literature (ref 24) [α]D = +27.3 (89% ee).
  • Boeckman, R. K., Jr; Biegasiewicz, K. F.; Tusch, D. J.; Miller, J. R. Organocatalytic Enantioselective Alpha-Hydroxymethylation of Aldehydes: Mechanistic Aspects and Optimization. J. Org. Chem. 2015, 46, 4030–4045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.