Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 15
280
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Efficient synthesis of novel 6-substituted 2-(4-aryl-1,2,3-triazol-1-yl)pyrimidines and 7-deazapurinesFootnote*

, , , & ORCID Icon
Pages 1974-1985 | Received 03 Mar 2018, Published online: 28 Jun 2018

References

  • De Coen, L. M.; Heugebaert, T. S. A.; García, D.; Stevens, C. V. Synthetic Entries to and Biological Activity of Pyrrolopyrimidines. Chem. Rev. 2016, 116, 80–139.
  • De Clercq, E.; Li, G. Approved Antiviral Drugs over the past 50 Years. Clin. Microbiol. Rev. 2016, 29, 695–747.
  • Tumkevicius, S.; Dodonova, J. Functionalization of Pyrrolo[2,3-d]Pyrimidine by Palladium-Catalyzed Cross-Coupling Reactions (Review). Chem. Heterocycl. Comp. 2012, 48, 258–279.
  • Perlikova, P.; Hocek, M. Pyrrolo[2,3-d]Pyrimidine (7-Deazapurine) as a Privileged Scaffold in Design of Antitumor and Antiviral Nucleosides. Med. Res. Rev. 2017, 37, 1429–1460.
  • Roopan, S. M.; Sompalle, R. Synthetic Chemistry of Pyrimidines and Fused Pyrimidines: A Review. Synth. Commun 2016, 46, 645–672.
  • Achelle, S.; Baudequin, C. Recent Advances in Pyrimidine Derivatives as Luminescent, Photovoltaic and Non-Linear Optical Materials. In Targets in Heterocyclic Systems; Attanasi, O. A. and Spinelli, D., Eds.; Italian Society of Chemistry: Rome, 2013, 17; pp. 1–34.
  • Achelle, S.; Ple, N. Pyrimidine Ring as Building Block for the Synthesis of Functionalized ?-Conjugated Materials. Curr. Org. Synth 2012, 9, 163–187.
  • Su, S. J.; Cai, C.; Kido, J. RGB Phosphorescent Organic Light-Emitting Diodes by Using Host Materials with Heterocyclic Cores: Effect of Nitrogen Atom Orientations. Chem. Mater. 2011, 23, 274–284.
  • Hadad, C.; Achelle, S.; Lopez-Solera, I.; Garcia-Martinez, J. C.; Rodriguez-Lopez, J. Metal Cation Complexation Studies of 4-Arylvinyl-2,6-di(pyridin-2-yl)pyrimidines: Effect on the Optical Properties. Dyes Pigm 2013, 97, 230–237.
  • Mati, S. S.; Chall, S.; Konar, S.; Rakshit, S.; Bhattacharya, S. C. Pyrimidine-Based Fluorescent Zinc Sensor: Photo-Physical Characteristics, Quantum Chemical Interpretation and Application in Real Samples. Sens. Actuators B. 2014, 201, 204–212.
  • Weng, J.; Mei, Q.; Ling, Q.; Fan, Q.; Huang, W. A New Colorimetric and Fluorescent Ratiometric Sensor for Hg2+ Based on 4-Pyren-1-Yl-Pyrimidine. Tetrahedron. 2012, 68, 3129–3134.
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599.
  • Tornoe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(i)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064.
  • Pieters, R. J.; Rijkers, D. T. S.; Liskamp, R. M. Application of the 1,3-Dipolar Cycloaddition Reaction in Chemical Biology: Approaches toward Multivalent Carbohydrates and Peptides and Peptide-Based Polymers. QSAR Comb. Sci. 2007, 26, 1181–1190.
  • Dirks, A. J.; Cornelissen, J.; van Delft, F. L.; van Hest, J. C. M.; Nolte, R. J. M.; Rowan, A. E.; Rutjes, F. Contents: QSAR Comb. Sci. 3/2007. QSAR Comb. Sci. 2007, 26, 303–1210.
  • Salisbury, C. M.; Cravatt, B. F. Click Chemistry-Led Advances in High Content Functional Proteomics. QSAR Comb. Sci. 2007, 26, 1229–1238.
  • Baskin, J. M.; Bertozzi, C. R. Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. QSAR Comb. Sci. 2007, 26, 1211–1219.
  • Lutz, J. F. Copper-Free Azide-Alkyne Cycloadditions: New Insights and Perspectives. Angew. Chem. Int. Ed. Engl. 2008, 47, 2182–2184.
  • Lutz, J. F.; Borner, H. G. Modern Trends in Polymer Bioconjugates Design. Prog. Polym. Sci. 2008, 33, 1–39.
  • Moses, J. E.; Moorhouse, A. D. The Growing Applications of Click Chemistry. Chem. Soc. Rev. 2007, 36, 1249–1262.
  • Kautny, P.; Bader, D.; Stoger, B.; Reider, G. A.; Frohlich, J.; Lumpi, D. Structure-Property Relationships in Click-Derived Donor-Triazole-Acceptor Materials. Chem. Eur. J. 2016, 22, 18887–18898.
  • Bag, S. S.; Kundu, R. Installation/Modulation of the Emission Response via Click Reaction. J. Org. Chem. 2011, 76, 3348–3356.
  • Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718.
  • Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A. M. 1,2,3-Triazole in Heterocyclic Compounds, Endowed with Biological Activity, through 1,3-Dipolar Cycloadditions. Eur. J. Org. Chem. 2014, 2014, 3306–5103.
  • Sharpless, K. B.; Manetsch, R. In Situ Click Chemistry: A Powerful Means for Lead Discovery. Expert Opin Drug Discov. 2006, 1, 525–538.
  • Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A. Click Chemistry Reactions in Medicinal Chemistry: Applications of the 1,3-Dipolar Cycloaddition Between Azides and Alkynes. Med. Res. Rev. 2008, 28, 278–308.
  • Aouad, M. R. Click Synthesis and Antimicrobial Screening of Novel Isatin-1,2,3-Triazoles with Piperidine, Morpholine, or Piperazine Moieties. Org. Prep. Proced. Int. 2017, 49, 216–227.
  • Cornec, A.-S.; Baudequin, C.; Fiol-Petit, C.; Ple, N.; Dupas, G.; Ramondenc, Y. One “Click” to Access Push–Triazole–Pull Fluorophores Incorporating a Pyrimidine Moiety: Structure–Photophysical Properties Relationships. Eur. J. Org. Chem. 2013, 1908–1915.
  • Denneval, C.; Moldovan, O.; Baudequin, C.; Achelle, S.; Baldeck, P.; Ple, N.; Darabantu, M.; Ramondenc, Y. Synthesis and Photophysical Properties of Push-Pull Structures Incorporating Diazines as Attracting Part with a Fluorene Core. Eur. J. Org. Chem. 2013, 2013, 5591–5602.
  • Skardziute, L.; Dodonova, J.; Voitechovicius, A.; Jovaisaite, J.; Komskis, R.; Voitechoviciute, A.; Bucevicius, J.; Kazlauskas, K.; Jursenas, S.; Tumkevicius, S. Synthesis and Optical Properties of the Isomeric Pyrimidine and Carbazole Derivatives: Effects of Polar Substituents and Linking Topology. Dyes Pigm. 2015, 118, 118–128.
  • Skardžiūtė, L.; Kazlauskas, K.; Dodonova, J.; Bucevičius, J.; Tumkevičius, S.; Juršėnas, S. Optical Study of the Formation of Pyrrolo[2,3-d]Pyrimidine-Based Fluorescent Nanoaggregates. Tetrahedron. 2013, 69, 9566–9572.
  • Bucevicius, J.; Skardziute, L.; Dodonova, J.; Kazlauskas, K.; Bagdziunas, G.; Jursenas, S.; Tumkevicius, S. 2,4-Bis(4-Aryl-1,2,3-Triazol-1-Yl)Pyrrolo[2,3-d]Pyrimidines: Synthesis and Tuning of Optical Properties by Polar Substituents. RSC Adv. 2015, 5, 38610–38622.
  • Lau, Y. H.; Rutledge, P. J.; Watkinson, M.; Todd, M. H. Chemical Sensors That Incorporate Click-Derived Triazoles. Chem. Soc. Rev. 2011, 40, 2848–2866.
  • Crowley, J. D.; McMorran, D. A. “Click-Triazole” Coordination Chemistry: Exploiting 1,4-Disubstituted-1,2,3-Triazoles as Ligands. Top. Heterocycl. Chem. 2012, 28, 31–83.
  • Cao, L.; Jiang, R.; Zhu, Y.; Wang, X.; Li, Y.; Li, Y. Synthesis of 1,2,3-Triazole-4-Carboxamide-Containing Foldamers for Sulfate Recognition. Eur. J. Org. Chem. 2014, 2014, 2687–2693.
  • Watkinson, M. Click Triazoles as Chemosensors. Top. Heterocycl. Chem 2012, 28, 109–136.
  • Jakubkiene, V.; Cepla, V.; Burbuliene, M. M.; Vainilavicius, P. Synthesis and Functionalization of 8-Methyl-2H-pyrimido[2,1-c][1,2,4]triazine-3,6(1H,4H)-dione. J. Heterocycl. Chem. 2012, 49, 737–741.
  • Čapkauskaitė, E.; Zubrienė, A.; Baranauskienė, L.; Tamulaitienė, G.; Manakova, E.; Kairys, V.; Gražulis, S.; Tumkevicius, S.; Matulis, D. Design of [(2-Pyrimidinylthio)Acetyl]Benzenesulfonamides as Inhibitors of Human Carbonic Anhydrases. Eur. J. Med. Chem. 2012, 51, 259–270.
  • Susvilo, I.; Brukstus, A.; Tumkevicius, S. Transformation of Methyl N-Methyl-N-(6-Substituted-5-Nitro-4-Pyrimidinyl)Aminoacetates into 4-Methylamino-5-Nitrosopyrimidines and 9-Methylpurin-8-Ones. Tetrahedron Lett. 2005, 46, 1841–1844.
  • Tumkevicius, S.; Sarakauskaite, Z.; Masevicius, V. Synthesis of Novel Thieno- andPyrrolo[2,3- d ]Pyrimidines Peri -Fused with Pyrimidine,1,4-Diazepine and 1,4-Thiazepine Rings. Synthesis. 2003, 2003, 1377–1382.
  • Tumkevicius, S.; Labanauskas, L.; Bucinskaite, V.; Brukstus, A.; Urbelis, G. Synthesis and Structure of Benzimidazo[1,2-c][1,2,3]thiadiazole: First Examples of a Novel Ring System. Tetrahedron Lett. 2003, 44, 6635–6638.
  • Tumkevicius, S.; Masevicius, V. Palladium-Catalysed Coupling of 4-Halopyrrolo[2,3- d]Pyrimidines with Arylacetylenes: Synthesis of a New Heterocyclic System - 4 H -Pyrrolo[2,3,4- De]Pyrimido[5′,4′:5,6][1,3]Diazepino[1,7-a ]Indole. Synlett. 2004, 2327–2330.
  • Davey, D. D.; Adler, M.; Arnaiz, D.; Eagen, K.; Erickson, S.; Guilford, W.; Kenrick, M.; Morrissey, M. M.; Ohlmeyer, M.; Pan, G.; et al. Design, Synthesis, and Activity of 2-Imidazol-1-Ylpyrimidine Derived Inducible Nitric Oxide Synthase Dimerization Inhibitors. J. Med. Chem. 2007, 50, 1146–1157.
  • Tolman, R. L.; Tolman, G. L.; Robins, R. K.; Townsend, L. B. Pyrrolopyrimidine Nucleosides. VI. Synthesis of 1,3 and 7-ß-D-Ribofuranosylpyrrolo[2,3-d]pyrimidines via Silylated Intermediates (1 a). J. Heterocycl. Chem. 1970, 7, 799–805.
  • Ali, H. I.; Ashida, N.; Nagamatsu, T. Antitumor Studies. Part 3: Design, Synthesis, Antitumor Activity, and Molecular Docking Study of Novel 2-Methylthio-, 2-Amino-, and 2-(N-Substituted Amino)-10-Alkyl-2-Deoxo-5-Deazaflavins. Bioorg. Med. Chem. 2007, 15, 6336–6352.
  • Chen, Z.; Venkatesan, A. M.; Dehnhardt, C. M.; Ayral-Kaloustian, S.; Brooijmans, N.; Mallon, R.; Feldberg, L.; Hollander, I.; Lucas, J.; Yu, K.; et al. Synthesis and SAR of Novel 4-Morpholinopyrrolopyrimidine Derivatives as Potent Phosphatidylinositol 3-Kinase Inhibitors. J. Med. Chem. 2010, 53, 3169–3182.
  • Voronkov, M. V.; Gu, K.; Baugh, S. D. P.; Becker, M. R. A Modular Approach to 4,5-Diaminopyrrolo[2,3-d]Pyrimidines and 2,4,5-Triaminopyrrolo[2,3-d]Pyrimidines. Tetrahedron Lett. 2006, 47, 4149–4151.
  • Wu, X.; Fang, Z.; Yang, B.; Zhong, L.; Yang, Q.; Zhang, C.; Huang, S.; Xiang, R.; Suzuki, T.; Li, L.-L.; et al. Discovery of KDM5A Inhibitors: Homology Modeling, Virtual Screening and Structure-Activity Relationship Analysis. Bioorg. Med. Chem. Lett. 2016, 26, 2284–2288.
  • Huang, T. H.; Tu, H.-Y.; Aibibu, Z.; Hou, C.-J.; Zhang, A.-D. Synthesis and Herbicidal Activity of New Substituted 2- and 4-Pyrimidinyloxyphenoxypropionate Derivatives. Arkivoc, 2011, (II), 1–17.
  • Cho, Y. S.; Borland, M.; Brain, C.; Chen, C. H.-T.; Cheng, H; Chopra, R.; Chung, K.; Groarke, J.; He, G.; Hou, Y.; et al. 4-(Pyrazol-4-Yl)-Pyrimidines as Selective Inhibitors of Cyclin-Dependent Kinase 4/6. J Med. Chem. 2010, 53, 7938–7957.
  • Radi, M.; Petricci, E.; Maga, G.; Corelli, F.; Botta, M. Parallel Solution-Phase Synthesis of 4-Dialkylamino-2-Methylsulfonyl-6-Vinylpyrimidines. J. Comb. Chem. 2005, 7, 117–122.
  • Zheng, Y.; Zhou, Z.; Li, H.; Li, J.; Li, A.; Ma, B.; Zhang, T.; Liao, Q.; Ye, Y.; Zhang, Z.; et al. A Multicenter Study on Etiology of Acute Pancreatitis in Beijing during 5 Years. Bioorg. Med. Chem. Lett. 2014, 24, 1–155.
  • Hirama, Y.; Abe, H.; Minakawa, N.; Matsuda, A. Synthesis and Properties of a Novel Nucleoside Derivative Possessing a 2,3,5,6-Tetraazabenzo[Cd]Azulene Skeleton. Tetrahedron. 2010, 66, 8402–8406.
  • Lee, J. H.; Zhang, Q.; Jo, S.; Chai, S. C.; Oh, M.; Im, W.; Lu, H.; Lim, H.-S. J. Am. Chem. Soc. 2011, 133, 676–679.
  • Lee, J. H.; Lim, H.-S. Solid-Phase Synthesis of Tetrasubstituted Pyrrolo[2,3-d]Pyrimidines. Org. Biomol. Chem. 2012, 10, 4229–4235.
  • Krivopalov, V. P.; Nikolaenkova, E. B.; Sedova, V. F.; Mamaev, V. P. Synthesis of 2- and 4-Azidopyrimidines Containing an o-Hydroxyphenyl Group and Their Reaction with Acetylene Derivatives. Chem. Heterocycl. Comp. 1983, 19, 977–981.
  • Kartsev, V. G.; Aliev, Z. G.; Voronina, G. N.; Atovmyan, L. O. Diazocarbonyl Derivatives of Heterocycles. 7. Synthesis, Properties, and Structure of 2,4-Diazido-6-diazoacetylpyrimidine. Chem. Heterocycl. Comp. 1990, 26, 441–445.
  • Krivopalov, V. P.; Mamatyuk, V. I.; Nikolaenkova, E. B. Effect of Intramolecular Hydrogen Bond on the Azide-Tetrazole Equilibrium of 5-(2-Hydroxyphenyl)Tetrazolo[1,5-a]Pyrimidine,-Tetrazolo[1,5-c]Pyrimidme, -Tetrazolo[1,5-c]Quinazoline, and 7-(2-Hydroxyphenyl)Tetrazolo[1,5-c]Pyrimidine. Russ. Chem. Bull. 1995, 44, 1435–1443.
  • Romanova, I. P.; Yusupova, G. G.; Yakhvarov, D. G.; Larionova, O. A.; Mochul"Skaya, N. N.; Sidorova, L. P.; Charushin, V. N.; Zverev, V. V.; Sinyashin, O. G. Reaction of Fullerene C 60 with 2-Azido-4,6-Diphenylpyrimidine. Russ. Chem. Bull., Int. Ed. 2003, 52, 2171–2174.
  • Drexler, J.; Groth, U. Trifluoromethylated Nucleosides: A Building Block Approach to Cytotoxic Adenosine Analogues. Eur. J. Org. Chem. 2014, 2014, 6314–6320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.