Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 17
511
Views
11
CrossRef citations to date
0
Altmetric
Articles

Synthesis of new thioxanthenes by organocatalytic intramolecular Friedel–Crafts reaction

Pages 2177-2188 | Received 05 Apr 2018, Published online: 16 Jul 2018

References

  • Watanabe, M.; Date, M.; Tsukazaki, M.; Furukawa, S. Regioselective Syntheses of Substituted Thioxanthen-9-One and Selenoxanthen-9-One Derivatives. Chem. Pharm. Bull. 1989, 37, 36–41. doi:10.1248/cpb.37.36
  • (a) Davis, S.; Weiss, M. J.; Wong, J. R.; Lampidis, T. J.; Chen, L. B. Mitochondrial and Plasma-Membrane Potentials Cause Unusual Accumulation and Retention of Rhodamine-123 by Human-Breast Adenocarcinoma-Derived Mcf-7 Cells. J. Biol. Chem. 1985, 260, 3844–3850. (b) Sun, Z. Y.; Botros, E.; Su, A. D.; Kim, Y.; Wang, E. J.; Baturay, N. Z.; Kwon, C. H. Sulfoxide-Containing Aromatic Nitrogen Mustards as Hypoxia-Directed Bioreductive Cytotoxins. J. Med. Chem. 2000, 43, 4160–4168. doi:10.1021/jm9904957
  • (a) Wentland, M. P.; Perni, R. B.; Powles, R. G.; Hlavac, A. G.; Mattes, K. C.; Corbett, T. H.; Coughlin, S. A.; Rake, J. B. Anti-Solid Tumor Efficacy and Preparation of N-[[1-[[2-(Diethylamino)Ethyl] Amino]-9-Oxo-9h-Thioxanthen-4-Yl]Methyl]Methanesulfonamide (Win-33377) and Related Derivatives. Bioorg. Med. Chem. Lett. 1994, 4, 609–614. DOI: 10.1016/S0960-894X(01)80164-5 (b) Showalter, H. D. H.; Angelo, M. M.; Berman, E. M.; Kanter, G. D.; Ortwine, D. F.; Rosskesten, S. G.; Sercel, A. D.; Turner, W. R.; Werbel, L. M.; Worth, D. F.; et al. Benzothiopyranoindazoles, a New Class of Chromophore Modified Anthracenedione Anticancer Agents – Synthesis and Activity against Murine Leukemias. J. Med. Chem. 1988, 31, 1527–1539. doi:10.1021/jm00403a009 (c) Archer, S.; Zayed, A. H.; Rej, R.; Rugino, T. A. Analogs of Hycanthone and Lucanthone as anti-Tumor Agents. J. Med. Chem. 1983, 26, 1240–1246. doi:10.1021/jm00363a007
  • Yunnikova, L. P.; Voronina, E. V. Synthesis of Xanthene and Thioxanthene Derıvatives and Study of Their Antimicrobial Activity. Pharm. Chem. J. 1996, 30, 695–696. doi:10.1007/BF02223747
  • Kim, J.; Song, J. H. Thioxanthenes, Chlorprothixene and Flupentixol Inhibit Proton Currents in BV2 Microglial Cells. Eur. J. Pharmacol. 2016, 779, 31–37. doi:10.1016/j.ejphar.2016.03.009
  • (a) Hafez, H. N.; Hegab, M. I.; Ahmed-Farag, I. S.; El-Gazzar, A. B. A. A Facile Regioselective Synthesis of Novel Spiro-Thioxanthene and Spiro-Xanthene-9',2-[1,3,4]Thiadiazole Derivatives as Potential Analgesic and anti-Inflammatory Agents. Bioorg. Med. Chem. Lett. 2008, 18, 4538–4543. doi:10.1016/j.bmcl.2008.07.042 (b) Schwarz, V.; Reis, O.; Glaser, T.; Thome, J.; Hiemke, C.; Haessler, F. Therapeutic Drug Monitoring of Zuclopenthixol in a Double-Blind Placebo-Controlled Discontinuation Study in Adults with Intellectual Disabilities and Aggressive Behaviour. Pharmacopsychiatry 2014, 47, 29–32. doi:10.1055/s-0033-1361115 (c) Karimi, G.; Vahabzadeh, M. Thioxanthenes. In Reference Module in Biomedical Sciences, from Encyclopedia of Toxicology, 3rd ed.; Borys, Douglas J., Ed.; 2014, pp 553–557. doi:10.1016/B978-0-12-386454-3.00656-4
  • Belal, F.; Hefnawy, M. M.; Aly, F. A. Analysis of Pharmaceutically Important Thioxanthene Derivatives. J. Pharmaceut. Biomed. 1997, 16, 369–376. doi:10.1016/S0731-7085(97)00072-1
  • Zhao, J.; Larock, R. C. Synthesis of Xanthones, Thioxanthones, and Acridones by the Coupling of Arynes and Substituted Benzoates. J. Org. Chem. 2007, 72, 583–588. doi:10.1021/jo0620718
  • Ran, R. C.; Pittman, C. U. An Improved Synthesis of Cyclohexenothioxanthenones. J. Heterocyclic Chem. 1993, 30, 1673–1675. doi:10.1002/jhet.5570300635
  • (a) Ran, R. C.; Pittman, C. U. An Improved Synthesis of Cyclohexenothioxanthenones. J. Heterocyclic Chem. 1993 30, 1673–1675. doi:10.1002/jhet.5570300635 (b) Okabayashi, I.; Fujiwara, H. Synthesis of [1]Benzothiopyrano[4,3,2-De]Quinoline. J. Heterocyclic Chem. 1994, 31, 733–735. doi:10.1002/jhet.5570310407
  • Archer, S.; Pica-Mattoccia, L.; Cioli, D.; Seyed-Mozaffari, A.; Zayed, A. H. Preparation and Antischistosomal and Antitumor Activity of Hycanthone and Some of its Congeners. Evidence for the Mode of Action of Hycanthone. J. Med. Chem. 1988, 31, 254–260. doi:10.1021/jm00396a040
  • (a) Vasu, D.; Yorimitsu, H.; Osuka, A. Palladium-Assisted “Aromatic Metamorphosis” of Dibenzothiophenes into Triphenylenes. Angew. Chem. Int. Ed. 2015, 54, 7162–7166. doi:10.1002/anie.201501992 (b) Wang, X.; Cuny, G. D.; Noel, T. A Mild, One-Pot Stadler-Ziegler Synthesis of Arylsulfides Facilitated by Photoredox Catalysis in Batch and Continuous-Flow. Angew. Chem. Int. Ed. 2013, 52, 7860–7864. doi:10.1002/anie.201303483 (c) Ma, D. W.; Xie, S. W.; Xue, P.; Zhang, X. J.; Dong, J. H.; Jiang, Y. W. Efficient and Economical Access to Substituted Benzothiazoles: Copper-Catalyzed Coupling of 2-Haloanilides with Metal Sulfides and Subsequent Condensation. Angew. Chem. Int. Ed. 2009, 48, 4222–4225. doi:10.1002/anie.200900486 (d) Beletskaya, I. P.; Ananikov, V. P. Transition-Metal-Catalyzed C-S, C-Se, and C-Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chem. Rev. 2011, 111, 1596–1636. doi:10.1021/cr100347k (e) Kondo, T.; Mitsudo, T. Metal-Catalyzed Carbon-Sulfur Bond Formation. Chem. Rev. 2000, 100, 3205–3220. doi:10.1021/cr9902749
  • Luo, B. L.; Cui, Q. B.; Luo, H. W.; Hu, Y. M.; Huang, P.; Wen, S. J.; N. Benzyldithiocarbamate Salts as Sulfur Sources to Access Tricyclic Thioheterocycles Mediated by Copper Species. Adv. Synth. Catal. 2016, 358, 2733–2738. doi:10.1002/adsc.201600405
  • Yildiz, T.; Kucuk, H. B. An Organocatalytic Method for the Synthesis of Some Novel Xanthene Derivatives by the Intramolecular Friedel-Crafts Reaction. Rsc Adv. 2017, 7, 16644–16649. doi:10.1039/C6RA27094H
  • (a) Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. Tert-Butoxide-Mediated Arylation of Benzene with Aryl Halides in the Presence of a Catalytic 1,10-Phenanthroline Derivative. J. Am. Chem. Soc. 2010, 132, 15537–15539. doi:10.1021/ja1080822 (b) Yanagisawa, S.; Ueda, K.; Taniguchi, T.; Itami, K. Potassium t-Butoxide Alone Can Promote the Biaryl Coupling of Electron-Deficient Nitrogen Heterocycles and Haloarenes. Org. Lett. 2008, 10, 4673–4676. doi:10.1021/ol8019764
  • (a) Zhang, X. X.; Rao, W. D.; Chan, S. W. H.; Chan, P. W. H. Iron(III) Chloride-Catalysed Direct Nucleophilic Alpha-Substitution of Morita-Baylis-Hillman Alcohols with Alcohols, Arenes, 1,3-Dicarbonyl Compounds, and Thiols. Org. Biomol. Chem. 2009, 7, 4186–4193. doi:10.1039/b908447a (b) Deng, X.; Liang, J. T.; Liu, J.; McAllister, H.; Schubert, C.; Mani, N. S. Practical Synthesis of Enantiopure 7-Alkoxy-4-Aryl-Tetrahydroisoquinoline, a Dual Serotonin Reuptake Inhibitor/Histamine H-3 Antagonist. Org. Process Res. Dev. 2007, 11, 1043–1050. doi:10.1021/op700183q (c) Hashmi, A. S. K.; Schwarz, L.; Rubenbauer, P.; Blanco, M. C. The Condensation of Carbonyl Compounds with Electron-Rich Arenes: Mercury, Thallium, Gold or a Proton? Adv. Synth. Catal. 2006, 348, 705–708. doi:10.1002/adsc.200505464
  • (a) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Direct Nucleophilic S(N)1-Type Reactions of Alcohols. Eur. J. Org. Chem. 2011 647–666. doi:10.1002/ejoc.201001474 (b) Bandini, M.; Tragni, M. pi-Activated Alcohols: An Emerging Class of Alkylating Agents for Catalytic Friedel-Crafts Reactions. Org. Biomol. Chem. 2009, 7, 1501–1507. doi:10.1039/b823217b (c) Muzart, J. Gold-Catalysed Reactions of Alcohols: Isomerisation, Inter- and Intramolecular Reactions Leading to C-C and C-Heteroatom Bonds. Tetrahedron 2008, 64, 5815–5849. doi:10.1016/j.tet.2008.04.018
  • Das, S. K.; Singh, R.; Panda, G. A New Synthetic Route to Unsymmetrical 9-Arylxanthenes. Eur. J. Org. Chem. 2009, 4757–4761. doi:10.1002/ejoc.200900676
  • Fleischer, I.; Pospech, J. Bronsted Acid-Catalyzed Hydroarylation of Activated Olefins. Rsc. Adv. 2015, 5, 493–496. doi:10.1039/C4RA13647K
  • (a) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W.; Atodiresei, I. Modulating the Acidity: Highly Acidic Bronsted Acids in Asymmetric Catalysis. Angew. Chem. Int. Ed. 2011 50, 6706–6720. doi:10.1002/anie.201100169 (b) Kaupmees, K.; Tolstoluzhsky, N.; Raja, S.; Rueping, M.; Leito, I. On the Acidity and Reactivity of Highly Effective Chiral Bronsted Acid Catalysts: Establishment of an Acidity Scale. Angew. Chem. Int. Ed. 2013, 52, 11569–11572. doi:10.1002/anie.201303605 (c) Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Asymmetric Bronsted Acid Catalysis: Enantioselective Nucleophilic Substitutions and 1,4-Additions. Angew. Chem. Int. Ed. 2008, 47, 593–596. doi:10.1002/anie.200703668
  • Yagupolskii, L. M.; Petrik, V. N.; Kondratenko, N. V.; Soovali, L.; Kaljurand, I.; Leito, I.; Koppel, I. A. The Immense Acidifying Effect of the Supersubstituent = NSO2CF3 on the Acidity of Amides and Amidines of Benzoic Acids in Acetonitrile. J. Chem. Soc. Perk T 2 2002, 1950–1955. doi:10.1039/B204172C
  • Rueping, M.; Nachtsheim, B. J.; Koenigs, R. M.; Ieawsuwan, W. Aspects of N-Triflylphosphoramides and Their Calcium Salts-Highly Acidic and Effective Bronsted Acids. Chem. Eur. J. 2010, 16, 13116–13126. doi:10.1002/chem.201001438
  • (a) Kucuk, H. B. Practical Synthesis of 2,5-Disubstituted 1,3-Dioxolane-4-Ones and Highly Diastereoselective Cis-2,5-Disubstituted 1,3-Dioxolane-4-Ones from Alpha-Hydroxy Acids Catalyzed by N-Triflylphosphoramide. Tetrahedron Lett. 2015, 56, 5583–5586. doi:10.1016/j.tetlet.2015.08.046 (b) Schneekloth, J. S.; Kim, J.; Sorensen, E. J. An Interrupted Ugi Reaction Enables the Preparation of Substituted Indoxyls and Aminoindoles. Tetrahedron 2009, 65 (16), 3096–3101. doi:10.1016/j.tet.2008.08.055
  • Yeager, G. W.; Schissel, D. N. An Umpoled Synthon Approach to the Synthesis of 2-Aryloxyphenols. Synthesis 1995, 1995, 28–30. doi:10.1055/s-1995-3859
  • Libbey, A. J.; Stock, J. T. Dissociation Constants of Sulfamic Acid, Salicylic Acid, Thymol Blue, and Bromocresol Green in Anhydrous N,N-Dimethylformamide. Anal. Chem. 1970, 42, 526. doi:10.1021/ac60286a021
  • Shan, S. O.; Herschlag, D. The Change in Hydrogen Bond Strength Accompanying Charge Rearrangement: Implications for Enzymatic Catalysis. Proc. Natl. Acad. Sci. USA. 1996, 93, 14474–14479. doi:10.1073/pnas.93.25.14474
  • Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete Field Guide to Asymmetric BINOL-Phosphate Derived Bronsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Bronsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chem. Rev. 2014, 114, 9047–9153. doi:10.1021/cr5001496
  • Nakashima, D.; Yamamoto, H. Design of Chiral N-triflyl Phosphoramide as a Strong Chiral Brønsted Acid and its Application to Asymmetric Diels-Alder Reaction. J. Am. Chem. Soc. 2006, 128, 9626–9627. doi:10.1021/ja062508t
  • (a) Hsiao, C. C.; Raja, S.; Liao, H. H.; Atodiresei, I.; Rueping, M. Ortho, Quinone Methides as Reactive Intermediates in Asymmetric Bronsted Acid Catalyzed Cycloadditions with Unactivated Alkenes by Exclusive Activation of the Electrophile. Angew. Chem. Int. Ed. 2015, 54, 5762–5765. doi:10.1002/anie.201409850 (b) Hsiao, C.-C.; Raja, S.; Liao, H.-H.; Atodiresei, I.; Rueping, M. Enantio- and Diastereoselective Access to Distant Stereocenters Embedded within Tetrahydroxanthenes: Utilizing Ortho-Quinone Methides as Reactive Intermediates in Asymmetric Bronsted Acid Catalysis. Angew. Chem. Int. Ed. 2015, 46, 13258–13263. doi:10.1002/anie.201406587
  • Ogura, F.; Hounshell, W. D.; Maryanoff, C. A.; Richter, W. J.; Mislow, K. Rearrangement Kinetics of 10-Aryl-10-Thiaanthracenes. J. Am. Chem. Soc. 1976, 98, 3615. doi:10.1021/ja00428a038
  • Schonberg, A.; Mustafa, A. Photochemical Reactions in Sunlight. Part XII. Reactions with Phenanthraquinone, 9-arylxanthens, and Diphenyl Triketone. J. Chem. Soc. 1947, 997–1000. doi:10.1039/JR9470000997
  • Hori, M.; Miyake, T.; Hikazutani, K.; Kataoka, Y.; Nakamura, M.; Wada, T.; Kase, M. Sub-NM Screening Layer Approach for Ultra Shallow Junction Formation. Mater Res Soc Symp Proc. 1999, 568, 15–18. doi:10.1557/PROC-568-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.