Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 16
459
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

One-pot sequential multi-component reaction: Synthesis of 3-substituted indoles

, , , ORCID Icon & ORCID Icon
Pages 2074-2082 | Received 14 Apr 2018, Published online: 09 Jul 2018

References

  • Ramon, D. J.; Yus, M. Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angew. Chem. Int. Ed. 2005, 44, 1602–1634. doi: 10.1002/anie.200460548.
  • Cordova, A. The Direct Catalytic Asymmetric Mannich Reaction. Acc. Chem. Res. 2004, 37, 102–112. doi:10.1021/ar030231l.
  • Dömling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006, 106, 17–89. doi: 10.1021/cr0505728.
  • Wang, K. K. Cascade Radical Cyclizations via Biradicals Generated from Enediynes, Enyne-Allenes, and Enyne-Ketenes. Chem. Rev. 1996, 96, 207–222. doi: 10.1021/cr950030y.
  • Lu, L.-Q.; Chen, J. R.; Xiao, W. J. Development of Cascade Reactions for the Concise Construction of Diverse Heterocyclic Architectures. Acc. Chem. Res. 2012, 45, 1278–1293. doi: 10.1021/ar200338s.
  • Hojo, D.; Tanaka, K. Rhodium-Catalyzed C–H Bond Activation/[4 + 2] Annulation/Aromatization Cascade to Produce Phenol, Naphthol, Phenanthrenol, and Triphenylenol Derivatives. Org. Lett. 2012, 14, 1492–1495. doi: 10.1021/ol300234g.
  • Piou, T.; Neuville, L.; Zhu, J. Spirocyclization by Palladium-Catalyzed Domino Heck–Direct C–H Arylation Reactions: Synthesis of Spirodihydroquinolin-2-Ones. Org. Lett. 2012, 14, 3760–3763. doi: 10.1021/ol301616w.
  • Newman, S. G.; Howell, J. K.; Nicolaus, N.; Lautens, M. Palladium-Catalyzed Carbohalogenation: Bromide to Iodide Exchange and Domino Processes. J. Am. Chem. Soc. 2011, 133, 14916–14919. doi: 10.1021/ja206099t.
  • Kang, D.; Park, S.; Ryu, T.; Lee, P. H. Gold-Catalyzed Hydrosilyloxylation Driving Tandem Aldol and Mannich Reactions. Org. Lett. 2012, 14, 3912–3915. doi: 10.1021/ol301660f.
  • Gupta, S.; Kumar, B.; Kundu, B. Three-Component Tandem Reaction Involving Acid Chlorides, Terminal Alkynes, and 2-Aminoindole Hydrochlorides: Synthesis of α-Carboline Derivatives in Aqueous Conditions via Regioselective [3 + 3] Cyclocondensation. J. Org. Chem. 2011, 76, 10154–10162. doi: 10.1021/jo201994v.
  • Domling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. 2000, 39, 3168–3210. doi: 10.1002/1521-3773(20000915)39:18 < 3168::AID-ANIE3168 > 3.0.CO;2-U.
  • Tietze, L. F.; Beifuss, U. Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future. Angew. Chem. Int. Ed. Engl. 1993, 32, 131–163. doi: 10.1002/anie.199301313.
  • Cane, D. E. Enzymatic Formation of Sesquiterpenes. Chem. Rev. 1990, 90, 1089–1103. doi: 10.1021/cr00105a002.
  • Mayer, S. F.; Kroutiland, W.; Faber, K. Enzyme-initiated domino (cascade) reactions. Chem. Soc. Rev. 2001, 30, 332–339. doi: 10.1039/B105493G.
  • Dömling, A.; Huang, Y. Piperazine Scaffolds via Isocyanide-Based Multicomponent Reactions. Synthesis 2010, 2010, 2859–2883. doi: 10.1055/s-0030-1257906.
  • Shiri, M. Indoles in Multicomponent Processes (MCPs). Chem. Rev. 2012, 112, 3508–3549. doi: 10.1021/cr2003954.
  • Gu, Y. Multicomponent Reactions in Unconventional Solvents: state of the Art. Green Chem. 2012, 14, 2091–2128. doi: 10.1039/C2GC35635J.
  • Tundo, P.; Anastas, P.; Black, D. S.; Breen, J.; Collins, T.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. Synthetic Pathways and Processes in Green Chemistry. Introductory Overview. Pure Appl. Chem. 2000, 72, 1207–1228. doi: 10.1351/pac200072071207.
  • Nussbaum, F. V. Stephacidin B – A New Stage of Complexity within Prenylated Indole Alkaloids from Fungi. Angew. Chem. Int. Ed. 2003, 42, 3068–3071. doi: 10.1002/anie.200301646.
  • Pindur, U.; Lemster, T. Advances in Marinenatural Productsof the Indole and Annelated Indole Series: Chemical and Biological Aspects. Curr. Med. Chem. 2001, 8, 1681–1698. doi: 10.2174/0929867013371941.
  • Peng, W.; Świtalska, M.; Wang, L.; Mei, Z.-W.; Edazawa, Y.; Pang, C.-Q.; El-Tantawy El-Sayed, I.; Wietrzyk, J.; Inokuchi, T. Synthesis and in Vitro Antiproliferative Activity of New 11-Aminoalkylamino-Substituted Chromeno[2,3-b]Indoles. Eur. J. Med. Chem. 2012, 58, 441–451. doi: 10.1016/j.ejmech.2012.10.023.
  • Casapullo, A.; Bifulco, G.; Bruno, I.; Riccio, R. New Bisindole Alkaloids of the Topsentin and Hamacanthin Classes from the Mediterranean Marine Sponge Rhaphisia lacazei. J. Nat. Prod. 2000, 63, 447–451. doi: 10.1021/np9903292.
  • Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1996.
  • Basha, A. R. Indole Alkaloids; Harwood Academic: Chichester, 1998.
  • Sreejith, P.; Beyo, R. S.; Divya, L.; Vijayasree, A. S.; Manju, M.; Oommen, O. V. Triiodothyronine and Melatonin Influence Antioxidant Defense Mechanism in a Teleost Anabas Testudineus (Bloch): In Vitro Study. Indian J. Biochem. Biophys. 2007, 44, 164–168.
  • Estevão, M. S.; Carvalho, L. C.; Ribeiro, D.; Couto, D.; Freitas, M.; Gomes, A.; Ferreira, L. M.; Fernandes, E.; Marques, M. M. Antioxidant Activity of Unexplored Indole Derivatives: Synthesis and Screening. Eur. J. Med. Chem. 2010, 45, 4869–4878. doi: 10.1016/j.ejmech.2010.07.059.
  • Grewal, P.; Mallaney, M.; Lau, K.; Sreedhara, A. Screening Methods to Identify Indole Derivatives That Protect against Reactive Oxygen Species Induced Tryptophan Oxidation in Proteins. Mol. Pharm. 2014, 11, 1259–1272. doi: 10.1021/mp4007375.
  • Liu, Y.; Zhang, H. H.; Zhang, Y. C.; Jiang, Y.; Shi, F.; Tu, S. J. Organocatalytic Enantioselective and (Z)-Selective Allylation of 3-Indolylmethanol via Hydrogen-Bond Activation. Chem. Commun. 2014, 50, 12054–12057. doi: 10.1039/C4CC02056A.
  • Li, Y.; Shi, F. Q.; He, Q. L.; You, S. L. N. Heterocyclic Carbene-Catalyzed Cross-Coupling of Aldehydes with Arylsulfonyl Indoles. Org. Lett. 2009, 11, 3182–3185. doi: 10.1021/ol9013238.
  • Chen, C.; Feng, H. X.; Li, Z. L.; Cai, P. W.; Liu, Y. K.; Shan, L. H.; Zhou, X. L. A Highly Efficient Route to C-3 Alkyl-Substituted Indoles via a Metal-Free Transfer Hydrogenation. Tetrahedron Lett. 2014, 55, 3774–3776. doi: 10.1016/j.tetlet.2014.05.064.
  • Liu, Y.-F.; Chen, M.-H.; Wang, X.-L.; Guo, Q.-L.; Zhu, C.-G.; Lin, S.; Xu, C.-B.; Jiang, Y.-P.; Li, Y.-H.; Jiang, J.-D.; et al. Antiviral Enantiomers of a Bisindole Alkaloid with a New Carbon Skeleton from the Roots of Isatis indigotica. Chin. Chem. Lett. 2015, 26, 931. doi: 10.1016/j.cclet.2015.05.052.
  • (a) Kanamaru, T.; Nakano, Y.; Toyoda, Y.; Miyagawa, K.-I.; Tada, M.; Kaisho, T.; Nakao, M. In Vitro and in Vivo Antibacterial Activities of TAK-083, an Agent for Treatment of Helicobacter pylori Infection. Antimicrob. Agents Chemother. 2001, 45, 2455–2459. doi: 10.1128/AAC.45.9.2455-2459.2001. (b) Kanamaru, T.; Nakano, Y.; Toyoda, Y.; Miyagawa, K.-I.; Tada, M.; Kaisho, T.; Nakao, M. Anti-Staphylococcal Activity of Indolmycin, a Potential Topical Agent for Control of Staphylococcal Infections. J. Antimicrob. Chemother. 2001, 45, 2455–2522. doi: 10.1093/jac/dkh352.
  • Pegu, C. D.; Nasrin, S. B.; Deb, M. L.; Das, D. J.; Saikia, K. K.; Baruah, P. K. CAN-Catalyzed Microwave Promoted Reaction of Indole with Betti Bases under Solvent-Free Condition and Evaluation of Antibacterial Activity of the Products. Syn. Commun. 2017, 47, 2007–2014. doi: 10.1080/00397911.2017.1360912.
  • Le, H. T.; Schaldach, C. M.; Firestone, G. L.; Bjeldanes, L. F. Diindolylmethane Is a Strong Androgen Antagonist in Human Prostate Cancer Cells. J. Biol. Chem. 2003, 278, 21136–21145. doi: 10.1074/jbc.M300588200.
  • Deb, M. L.; Borpatra, P. J.; Saikia, P. J.; Baruah, P. K. Base-Promoted Three-Component One-Pot Approach to 3-(α,α-Diarylmethyl)Indoles via Arylation of 3-Indolylalcohols. Synthesis 2016, 49, 1401–1409. doi: 10.1055/s-0036-15880098.
  • Deb, M. L.; Bhuyan, P. J. An Efficient and Clean Synthesis of Bis(Indolyl)Methanes in a Protic Solvent at Room Temperature. Tetrahedron Lett. 2006, 47, 1441–1443. doi: 10.1016/j.tetlet.2005.12.093.
  • (a) Deb, M. L.; Deka, B.; Saikia, P. J.; Baruah, P. K. Base-Promoted Three-Component Cascade Approach to Unsymmetrical Bis(Indolyl)Methanes. Tetrahedron Lett. 2017, 58, 1999–2003. doi: 10.1016/j.tetlet.2017.04.032 (b) Uddin, M. I.; Buck, J. R.; Schulte, M. L.; Tang, D.; Saleh, S. A.; Cheung, Y.-Y.; Harp, J.; Manning, H. C. Microwave-Assisted, One-Pot Reaction of 7-Azaindoles and Aldehydes: A Facile Route to Novel Di-7-Azaindolylmethanes. Tetrahedron Lett. 2014, 55, 169–173. doi: 10.1016/j.tetlet.2013.10.143; (c) Li, J.-T.; Dai, H.-G.; Xu, W.-Z.; Li, T.-S. An Efficient and Practical Synthesis of Bis(Indolyl)Methanes Catalyzed by Aminosulfonic Acid under Ultrasound. Ultrason. Sonochem. 2006, 13, 24–27. doi: 10.1016/j.ultsonch.2004.12.004.
  • Deb, M. L.; Das, C.; Deka, B.; Saikia, P. J.; Baruah, P. K.; Base, P. T.-C. One-Pot Approach to 3-(α,α-Diarylmethyl)Indoles via Arylation of 3-Indolylalcohols. Synlett 2016, 27, 2788–2794. doi: 10.1055/s-0036-1588887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.