Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 18
189
Views
11
CrossRef citations to date
0
Altmetric
Articles

A silver nanoparticles-catalyzed efficient three-component synthesis of polysubstituted 4H-chromenylphosphonates and their antioxidant activity

, , , , &
Pages 2366-2381 | Received 11 Feb 2018, Published online: 08 Oct 2018

References

  • (a) Engel, R.; Cohen, J. L. I. Synthesis of Carbon–Phosphorus Bonds, 2nd ed.; CRC PRESS: New York, Washington, D.C., 2004. (b) Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M. M. Iron-Doped Single Walled Carbon Nanotubes as an Efficient and Reusable Heterogeneous Catalyst for the Synthesis of Organophosphorus Compounds under Solvent-Free Conditions. Tetrahedron 2013, 69, 4708–4724. DOI: 10.1016/j.tet.2013.03.073. (c) Pandeya, V. K.; Chaturvedi, K.; Chandraa, R.; Pandeya, O. P.; Senguptaa, S. K. Synthesis, Structures, and Fungitoxicity of Novel Organophosphorus Compounds. Phosphorus, Sulfur, Silicon Relat. Elem. 2012, 187, 1401–1408. DOI: 10.1080/10426507.2012.681408. (d) Ziyaadini, M.; Maghsoodlou, M. T.; Hazeri, N.; Khorassani, S. M. H. Synthesis of New Stable Phosphorus Ylides and 1,4-Diionic Organophosphorus Compound from a Reaction between Hexamethyl Phosphorous Triamide and Dimethyl Acetylenedicarboxylate in the Presence of CH-Acids. Heteroat. Chem. 2013, 24, 84–89. DOI: 10.1002/hc.21067. (e) Xu, Q.; Zhou, Y. B.; Zhao, C. Q.; Yin, S. F.; Han, L. B. Transition Metal-Catalyzed Efficient and Green Transformations of P(O)-H Compounds to Functional Organophosphorus Compounds. Mini-Rev. Med. Chem. 2013, 13, 824–835. DOI: 10.2174/1389557511313060005.
  • (a) Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E. Preparation of Peptidic a-Hydroxyphosphonates. A New Class of Transition State Analog Renin Inhibitors. Tetrahedron Lett. 1990, 31, 5587–5590. DOI: 10.1016/S0040-4039(00)97903-6. (b) Stowasser, B.; Budt, K. H.; Li, J. Q.; Peyman, A.; Ruppert, D. New Hybrid Transition State Analog Inhibitors of HIV Protease with Peripheric C2-Symmetry. Tetrahedron Lett. 1992, 33, 6625–6628. DOI: 10.1016/S0040-4039(00)61002-X.
  • Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. Renin Inhibitors. Synthesis of Transition-State Analogue Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond. J. Med. Chem. 1989, 32, 1652–1661. DOI: 10.1021/jm00127a041.
  • Kafarski, P.; LeJczak, B. Biological Activity of Aminophosphonic Acids. Phosphorus Sulfur Silicon Relat. Elem. 1991, 63, 193–215. DOI: 10.1080/10426509108029443.
  • (a) Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. 1-Aminoalkylphosphonous Acids: Part 1. Isosteres of the Protein Amino Acids. J. Chem. Soc. Perkin Trans. 1984, 1, 2845–2853. DOI: 10.1039/P19840002845. (b) Atherton, F. R.; Hassall, C. H.; Lambert, R. W. Synthesis and Structure-Activity Relationships of Antibacterial Phosphonopeptides Incorporating (1-Aminoethyl) Phosphonic Acid and (Aminomethyl), Phosphonic Acid. J. Med. Chem. 1986, 29, 29–40. DOI: 10.1021/jm00151a005.
  • Schweizer E. E.; Meeder-Nycz D. 2H - and 4H -1-Benzopyrans. In The Chemistry of Heterocyclic Compounds: Chromenes, Chromanones, and Chromones, Ellis G. P. Ed.; John Wiley: New York, 1977; Vol. 3, pp 11–139.
  • Adbel Aziz Hafez, E.; Abdel Aziz Hafez, E.; Hilmy Elnagdi, M.; Ghani Ali Elagamey, A.; Mohamed Abdel Aziz El-Taweel, F. Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]-Coumarin and of Benzo[c]Pyrano[3,2-c]Quinoline Derivatives. Heterocycles. 1987, 26, 903–907. DOI: 10.3987/R-1987-04-0903.
  • (a) Li, C. J.; Li, Y. L. U.S. Patent Appl. Publ. U.S. 2,005,222,246 Al 20,051,006, 2005. (b) Ough, M.; Lewis, A.; Bey, E. A.; Gao, J.; Ritchie, J. M.; Bornmann, W.; Boothman, D. A.; Oberley, L. W.; Cullen, J. Efficacy of β-Lapachone in Pancreatic Cancer Treatment: Exploiting the Novel, Therapeutic Target NQO1. J. Cancer Biol. Ther. 2005, 4, 102. DOI: 10.4161/cbt.4.1.1382.
  • Moon, D. O.; Choi, Y. H.; Kim, N. D.; Park, Y. M.; Kim, G. Y. Anti-Inflammatory Effects of β-Lapachone in Lipopolysaccharide-Stimulated BV2 Microglia. Int. Immunopharmacol. 2007, 7, 506–514. DOI: 10.1016/j.intimp.2006.12.006.
  • (a) De Andrade-Neto, V. F.; Goulart, M. O. F.; Da Silva Filho, J. F.; Da Silva, M. J.; Pinto, M. D. C. F. R.; Pinto, A. V.; Zalis, M. G.; Carvalho, L. H.; Krettli, A. U. Antimalarial Activity of Phenazines from Lapachol, β-Lapachone and Its Derivatives against Plasmodium falciparum in Vitro and Plasmodium berghei in Vivo. Bioorg. Med. Chem. Lett. 2004, 14, 1145–1149. DOI: 10.1016/j.bmcl.2003.12.069. (b) Elisa, P. S.; Ana, E. B.; Ravelo, A. G.; Yapu, D. J.; Turba, A. G. Antiplasmodial Activity of Naphthoquinones Related to Lapachol and β-Lapachone. Chem. Biodivers. 2005, 2, 264–274. DOI: 10.1002/cbdv.200590009.
  • Shestopalov, A. M.; Emelianova, Y. M.; Nesterov, V. N. One-Step Synthesis of Substituted 2-Amino-5,6,7,8-Tetrahydro-4H-Benzo[b]Pyrans. Molecular and Crystal Structure of 2-Amino-3-(2-Methoxyethoxycarbonyl)-4-(2-Nitrophenil)-5-Oxo-5,6,7,8-Tetrahydro-4H-Benzo[b]Pyran. Russ. Chem. Bull. 2003, 52, 1164–1172. DOI: 10.1023/A:1024721710597.
  • Rajasekhar, M.; Rao, K. U. M.; Sundar, C. S.; Reddy, N. B.; Kumar Nayak, S. K.; Reddy, C. S. Green Synthesis and Bioactivity of 2-Amino-4H-Chromen-4-Yl-Phosphonates. Chem. Pharm. Bull. 2012, 60, 854–858. DOI: 10.1248/cpb.c12-00160.
  • Jayashree, P.; Shanthi, G.; Perumal, P. T. Indium Trichloride Catalyzed One-Pot Synthesis of New (2-Amino-3-Cyano-4H-Chromen-4-Yl) Phosphonic Acid Diethyl Ester. Synlett. 2009, 2009, 917–920. DOI: 10.1055/s-0028-1087960.
  • Gaikwad, D. S.; Undale, K. A.; Shaikh, T. S.; Pore, D. M. An Efficient Multi-Component Synthesis of (2-Amino-3-Cyano-4H-Chromen-4-Yl) Phosphonic Acid Diethyl Ester. C. R. Chim. 2011, 14, 865–868. DOI: 10.1016/j.crci.2011.03.001.
  • Kolla, S. R.; Lee, Y. R. Efficient One-Pot Synthesis of β-Phosphono Malonates and 2- Amino-4H-Chromen-4-Ylphosphonate Derivatives by Ethylenediamine Diacetate-Catalyzed Three-Component Reactions. Tetrahedron. 2012, 68, 226–237. DOI: 10.1016/j.tet.2011.10.060.
  • Murthy, S. N.; Madhav, B.; Reddy, V. P.; Nageswar, Y. V. D. One-Pot Synthesis of 2-Amino-4H-Chromen-4-Ylphosphonate Derivatives Using β-Cyclodextrin as Reusable Catalyst in Water. Tetrahedron Lett. 2010, 51, 3649–3653. DOI: 10.1016/j.tetlet.2010.05.028.
  • Kulkarni, M. A.; Pandurangi, V. R.; Desai, U. V.; Wadgaonkar, P. P. A Practical and Highly Efficient Protocol for Multicomponent Synthesis of β-Phosphonomalononitriles and 2-Amino-4H-Chromen-4-Yl Phosphonates Using Diethylamine as a Novel Organocatalyst. C. R. Chim. 2012, 15, 745–752. DOI: 10.1016/j.crci.2012.07.001.
  • Das, B.; Balasubramanyam, P.; Reddy, G. C.; Salvanna, N. Simple, Efficient, and Catalyst Free Synthesis of (2-Amino-4H-1-Benzopyran-4-Yl)Phosphonates in Polyethylene Glycol. HCA. 2011, 94, 1347–1350. DOI: 10.1002/hlca.201000461.
  • Elinson, M. N.; Nasybullin, R. F.; Nikishin, G. I. Electrocatalytic Fast and Efficient Multicomponent Approach to Medicinally Relevant (2-Amino-4H-Chromen-4-Yl) Phosphonate Scaffold. Heteroatom. Chem. 2013, 24, 398–403. DOI: 10.1002/hc.21106.
  • Kalla, R. M. N.; Byeon, S. J.; Heo, M. S.; Kim, I. Synthesis of 2-Amino-3-Cyano-4H-Chromen-4-Ylphosphonates and 2-Amino-4H-Chromenes Catalyzed Bytetramethylguanidine. Tetrahedron. 2013, 69, 10544–10551. DOI: 10.1016/j.tet.2013.10.052.
  • Kalla, R. M. N.; Choi, J.-S.; Yoo, J.-W.; Byeon, S. J.; Heo, M. S.; Kim, I. Synthesis of 2-Amino-3-Cyano-4H-Chromen-4-Ylphosphonatesand Their Anticancer Properties. Eur. J. Med. Chem. 2014, 76, 61–66. DOI: 10.1016/j.ejmech.2014.02.025.
  • Dai, P.; Zha, G.; Lai, X.; Liu, W.; Gan, Q.; Shen, Y. Inorganic Base Catalyzed Synthesis of (2-Amino-3-Cyano-4H-Chromene-4-Yl) Phosphonate Derivatives via Multi-Component Reaction under Mild and Efficient Conditions. RSC Adv. 2014, 4, 63420–63424. DOI: 10.1039/C4RA09359C.
  • Sobhani, S.; Honarmand, M. Silica-Bonded 2-Hydroxyethylammonium Acetate as an Efficient and Recyclable Catalyst for the Synthesis of 2-Amino-4H-Chromen-4-Yl Phosphonates and β-Phosphonomalonates. Catal. Lett. 2013, 143, 476–485. DOI: 10.1007/s10562-013-0968-8.
  • (a) Das, D. Multicomponent Reactions in Organic Synthesis Using Copper-Based Nanocatalysts. Chemistry Select. 2016, 1, 1959–1980. DOI: 10.1002/slct.201600414. (b) Hajjami, M.; Gholamian, F. Tribromide Ion Immobilized on Magnetic Nanoparticle as a New, Efficient and Reusable Nanocatalyst in Multicomponent Reactions. RSC Adv. 2016, 6, 87950–87960. DOI: 10.1039/C6RA15474C. (c) Kothandapani, J.; Ganesan, A.; Mani, G. K.; Kulandaisamy, A. J.; Rayappan, J. B. B.; Selva Ganesan, S. Zinc Oxide Surface: A Versatile Nanoplatform for Solvent-Free Synthesis of Diverse Isatin Derivatives. Tetrahedron Lett. 2016, 57, 3472–3475. DOI: 10.1016/j.tetlet.2016.06.094. (d) Amoozadeh, A.; Azhari, S.; Kolvari, E.; Otokesh, S. Synthesis of Pyrimidinone and 5-Unsubstituted 4,6-Diarylpyrimidine-2(1H)-Ones by Using Nano Magnetic Catalyst under Solvent Free Condition. J. Chin. Chem. Soc. 2015, 62, 968–973. DOI: 10.1002/jccs.201500120. (e) Amoozadeh, A.; Golian, S.; Rahmani, S. TiO2-Coated Magnetite Nanoparticle-Supported Sulfonic Acid as a New, Efficient, Magnetically Separable and Reusable Heterogeneous Solid Acid Catalyst for Multicomponent Reactions. RSC Adv. 2015, 5, 45974–45982. DOI: 10.1039/C5RA06515A. (f) Hajinasiri, R.; Hossaini, Z.; Sheikholeslami-Farahani, F. ZnO-Nanorods as the Catalyst for the Synthesis of 1,3-Thiazole Derivatives via Multicomponent Reactions. Comb. Chem. High Throughput Screen. 2015, 18, 42–47. (g) Rajput, J. K.; Kaur, G. Synthesis and Applications of CoFe2O4 Nanoparticles for Multicomponent Reactions. Catal. Sci. Technol. 2014, 4, 142–151. DOI: 10.2174/1386207317666141203123133. (h) Doustkhah, E.; Rostamnia, S. Covalently Bonded Sulfonic Acid Magnetic Graphene Oxide: Fe3O4@GO-Pr-SO3H as a Powerful Hybrid Catalyst for Synthesis of Indazolophthalazinetriones. J. Colloid. Interface Sci. 2016, 478, 280–287. DOI: 10.1016/j.jcis.2016.06.020. (i) Rostamnia, S.; Doustkhah, E.; Baghban, A.; Zeynizadeh, B. Seaweed‐Derived κ‐Carrageenan: Modified κ‐Carrageenan as a Recyclable Green Catalyst in the Multicomponent Synthesis of Aminophosphonates and Polyhydroquinolines. J. Appl. Polym. Sci. 2016, 133, 43190. DOI: 10.1002/app.43190. (j) Doustkhah, E.; Rostamnia, S.; Hassankhani, A. The Raise of SBA-SO3H Catalytic Activity by Inducing Ultrasound Irradiation in the Multicomponent Syntheses. J. Porous Mater. 2016, 23, 549–556. DOI: 10.1007/s10934-015-0108-5. (k) Rostamnia, S.; Doustkhah, E. A Mesoporous Silica/Fluorinated Alcohol Adduct: An Efficient Metal-Free, Three-Component Synthesis of Indazolophthalazinetrione Heterocycles Using a Reusable Nanoporous/Trifluoroethanol Adduct (SBA-15/TFE). Tetrahedron Lett. 2016, 1, 1959–2512. DOI: 10.1016/j.tetlet.2014.03.019.
  • McFarland, A. D.; Van Duyne, R. P. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett. 2003, 3, 1057–1062. DOI: 10.1021/nl034372s.
  • Astruc, D., Eds. 2008. Nanoparticles and Catalysis, vol. 1. Wiley-VCH Verlag GmbH & Co KGaA: Weinheim.
  • Zhou, Y.; Tingting, H.; Wang, Z. Nanoparticles of Silver Oxide. immobilized on Different Templates: Highly Efficient Catalysts for Three-Component Coupling of Aldehyde-Amine-Alkyne. Arkivoc. 2008, 2008, 80–90. DOI: 10.3998/ark.5550190.0009.d10.
  • Murugadoss, A.; Goswami, P.; Paul, A.; Chattopadhyay, A. Green Chitosan Bound Silver Nanoparticles for Selective C–C Bond Formation via in Situ Iodination of Phenols. J. Mol. Catal. A: Chem. 2009, 304, 153–158. DOI: 10.1016/j.molcata.2009.02.006.
  • Shimizu, K. I.; Sato, R.; Satsuma, A. Direct C–C Cross-Coupling of Secondary and Primary Alcohols Catalyzed by a Gamma-Alumina-Supported Silver Subnanocluster. Angew. Chem. Int. Ed. 2009, 48, 3982–3986. DOI: 10.1002/anie.200901057.
  • Mitsudome, T.; Arita, S.; Mori, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Supported Silver-Nanoparticle-Catalyzed Highly Efficient Aqueous Oxidation of Phenylsilanes to Silanols. Angew. Chem. 2008, 120, 8056–8058. DOI: 10.1002/anie.200802761.
  • Cong, H.; Becker, C. F.; Elliott, S. J.; Grinstaff, M. W.; Porco, J. A. Silver Nanoparticle-Catalyzed Diels-Alder Cycloadditions of 2′-Hydroxychalcones. J. Am. Chem. Soc. 2010, 132, 7514–7518. DOI: 10.1021/ja102482b.
  • Kushal, D. B.; Pawan, J. T.; Kishor, P. D.; Bhalchandra, M. B. Silver Nanoparticles as an Efficient, Heterogeneous and Recyclable Catalyst for Synthesis of β-Enaminones. Catal. Commun. 2010, 11, 1233–1237. DOI: 10.1016/j.catcom.2010.06.011.
  • Brahmachari, G.; Laskar, S. Nano-MgO-Catalyzed One-Pot Synthesis of Phosphonate Ester Functionalized 2-Amino-3-Cyano-4H-Chromene Scaffolds at Room Temperature. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 873–888. DOI: 10.1080/10426507.2014.903484.
  • Mohammadi, R.; Kassaee, M. Z. Sulfochitosan Encapsulated Nano-Fe3O4 as an Efficient and Reusable Magnetic Catalyst for Green Synthesis of 2-Amino-4H-Chromen-4-Yl Phosphonates. J. Mol. Catal. A: Chem. 2013, 380, 152–158. DOI: 10.1016/j.molcata.2013.09.027.
  • Hosseini-Sarvari, M.; Roosta, A. Synthesis of 2-Amino-4H-Chromen-4-Yl Phosphonats via C-P Bond Formation Catalyzed by Nano-Rods ZnO under Solvent-Free Condition. Comb. Chem. High Throughput Screen. 2014, 17, 47–52. DOI: 10.2174/13862073113166660064.
  • Nasab, M. J.; Kiasat, A. R. Designing Bifunctional Acid–Base Mesoporous Organosilica Nanocomposite and Its Application in Green Synthesis of 4H-Chromen-4-Yl Phosphonate Derivatives under Ultrasonic Irradiation. Microporous Mesoporous Mater. 2016, 223, 10–17. DOI: 10.1016/j.micromeso.2015.10.018.
  • Sedira, S.; Ayachi, A. A.; Lakehal, S.; Fateh, M.; Achour, S. Silver Nanoparticles in Combination with Acetic Acid and Zinc Oxide Quantum Dots for Antibacterial Activities Improvement–a Comparative Study. Appl. Surf. Sci. 2014, 311, 659–665. DOI: 10.1016/j.apsusc.2014.05.132.
  • Ramirez, D.; Jaramillo, F. Facile One-Pot Synthesis of Uniform Silver Nanoparticles and Growth Mechanism. Dyna Rev. Fac. Nac. Minas. 2016, 83, 165–170. DOI: 10.15446/dyna.v83n198.48707.
  • Mukherjee, P.; Roy, M.; Mandal, B. P.; Dey, G. K.; Mukherjee, P. K.; Ghatak, J.; Tyagi, A. K.; Kale, S. P. Green Synthesis of Highly Stabilized Nanocrystalline Silver Particles by a Non-Pathogenic and Agriculturally Important Fungus T. Asperellum. Nanotechnology. 2008, 19, 075103. DOI: 10.1088/0957-4484/19/7/075103.
  • Boulebd, H.; Zama, S.; Insaf, B.; Bouraiou, A.; Bouacida, S.; Merazig, H.; Romero, A.; Chioua, M.; Marco-Contelles, J.; Belfaitah, A. Synthesis and Biological Evaluation of Heterocyclic Privileged Medicinal Structures Containing (Benz)Imidazole Unit. Monatsh. Chem. 2016, 147, 2209–2220. DOI: 10.1007/s00706-016-1733-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.