Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 18
255
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Reusable zinc oxide nanoflowers for the synthesis of α-aminophosphonates under solvent-free ultrasonication

, &
Pages 2420-2434 | Received 21 Apr 2018, Published online: 17 Aug 2018

References

  • Vivek, P.; Basset, J. M.; Astruc, D. Editorial: Nanoscience Makes Catalysis Greener. ChemSusChem. 2012, 5, 6–8. doi: 10.1002/cssc.201100850
  • Vivek, P.; Rajender, S. V. Green Chemistry by Nano-Catalysis. Green Chem. 2010, 12, 743–754. doi: 10.1039/b921171c
  • (a) Wang, L.; Muhammed, M. Synthesis of Zinc Oxide Nanoparticles with Controlled Morphology. J. Mater. Chem. 1999, 9, 2871–2878. doi: 10.1039/A907098B. (b) Bai, S.; Hu, J.; Li, D.; Luo, R.; Chen, A.; Liu, C. C. Quantum-Sized ZnO Nanoparticles: Synthesis, Characterization and Sensing Properties for NO2. J. Mater. Chem. 2011, 21, 12288–12294. doi: 10.1039/C1JM11302J. (c) Hong, R. Y.; Li, J. H.; Chen, L. L.; Liu, D. Q.; Li, H. Z.; Zheng, Y.; Ding, J. Synthesis, Surface Modification and Photocatalytic Property of ZnO Nanoparticles. Powder Technol. 2009, 189, 426–432. doi: 10.1016/j.powtec.2008.07.004. (d) Navinchandra, G. S.; Shilpa, j.; Narayan, K.; Akshara, S.; Kothari, D. C.; Satyendra, M. Synthesis of ZnO Nanopencils Using Wet Chemical Method and Its Investigation as LPG Sensor. Appl. Surf. Sci. 2016, 390, 17–24. doi: 10.1016/j.apsusc.2016.08.050. (e) Xie, J.; Yanting, L.; Zhao, W.; Bian, L.; Wei, Y. Simple Fabrication and Photocatalytic Activity of ZnO Particles with Different Morphologies. Powder Technol. 2011, 207, 140–144. (f) Benjamin, W.; Zhou, Z.; Yinhua, L.; Deng, Y. Solution Synthesis of One-Dimensional ZnO Nanomaterials and Their Applications. Nanoscale. 2010, 2, 1573–1587. doi: 10.1039/c0nr00047g. (g) Guo, L.; Ji, Y. L.; Xu, H.; Simon, P.; Wu, Z. Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure. J. Am. Chem. Soc. 2002, 124, 14864–14865. doi: 10.1021/ja027947g
  • (a) Kobra, N.; Maryam, H.; Maryam, L.; Zeinab, A. ZnO Nanorods: Efficient and Reusable Catalysts for the Synthesis of Substituted Imidazoles in Water. J. Taibah Univ. Sci. 2015, 9, 570–578. doi: 10.1016/j.jtusci.2014.12.007. (b) Javad, S.-G.; Eshteghal, F.; Hossein, S. Arab J. Chem. 2017, 10, 1774–1780. (c) Zohreh, M.; Hamdollah, S.; Azam, S.; Firouz, M. M. ZnO Nanoparticles: An Efficient Nanocatalyst for the Synthesis of β-Acetamido Ketones/Esters via a Multi-Component Reaction. Catal. Commun. 2008, 9, 299–306. doi: 10.1016/j.catcom.2007.06.018. (d) Satyanarayana, K. V. V.; Ramaiah, P. A.; Murty, Y. L. N.; Chandra, M. R.; Pammi, S. V. N. Recyclable ZnO Nano Particles: Economical and Green Catalyst for the Synthesis of A3 Coupling of Propargylamines under Solvent Free Conditions. Catal. Commun 2012, 25, 50–53. doi: 10.1016/j.catcom.2012.03.031. (e) Banerjee, B. Recent Developments on Nano-ZnO Catalyzed Synthesis of Bioactive Heterocycles. J. Nanostruct. Chem. 2017, 7, 389–413. doi: 10.1007/s40097-017-0247-0.
  • Orsini, F.; Sello, G.; Sisti, M. F. Aminophosphonic Acids and Derivatives. Synthesis and Biological Applications. Curr. Med. Chem. 2010, 17, 264–289. doi:10.2174/092986710790149729
  • (a) Kabachnik, M. I.; Medved, T. Dokl. Akad. Nauk SSSR 1952, 83, 689–691. (b) Fields, E. K. The Synthesis of Esters of Substituted Amino Phosphonic Acids 1a. J. Am. Chem. Soc. 1952, 74, 1528–1531. doi: 10.1021/ja01126a054.
  • (a) Jun-Tao, H.; Jian-Wu, G.; Zhan-Hui, Z. NbCl5: An Efficient Catalyst for One-Pot Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Appl. Organometal. Chem. 2011, 25, 47–53. doi: 10.1002/aoc.1687. (b) Srikant, B.; Chakraborti, A. K. Zirconium(IV) Compounds as Efficient Catalysts for Synthesis of Alpha-Aminophosphonates. J. Org. Chem. 2008, 73, 6029–6032. doi: 10.1021/jo8009006. (c) Reddy, Y. T.; Reddy, P. N.; Kumar, B. S.; Rajput, P.; Sreenivasulu, N.; Rajitha, B. TiCl 4 -Catalyzed Efficient One-Pot Synthesis of α α-Amino Phosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2007, 182, 161–165. doi: 10.1080/10426500600887461. (d) Y.; Thirupathi, R. P.; Narsimha, R.; Sunil, K. B.; Sreenivasulu, N.; Rajitha, B. Heterocycl. Commun. 2005, 11, 153–156. doi: 10.1515/HC.2005.11.2.153. (e) Wu, J.; Sun, W.; Xia, H. G.; Sun, X. A Facile and Highly Efficient Route to Alpha-Amino Phosphonates via Three-Component Reactions Catalyzed by Mg(ClO4)2 or Molecular Iodine. Org. Biomol. Chem. 2006, 4, 1663–1666. doi:10.1039/B602536F. (f) Essid, I.; Toui, S. Efficient and Green One-Pot Multi-Component Synthesis of α-Aminophosphonates Catalyzed by Zinc Triflate. COS. 2017, 14, 272–278. doi: 10.15227/orgsyn.094.0346. (g) Ha, H. J.; Nam, G. S. An Efficient Synthesis of Anilinobenzylphosphonates. Synth. Commun. 1992, 22, 1143. doi: 10.1080/00397919208021098. (h) Dake, S. A.; Raut, D. S.; Kharat, K. R.; Mhaske, R. S.; Deshmukh, S. U.; Pawar, R. P. Ionic Liquid Promoted Synthesis, Antibacterial and in Vitro Antiproliferative Activity of Novel α-Aminophosphonate Derivatives. Bioorg. Med. Chem. Lett. 2011, 21, 2527–2532. doi: 10.1016/j.bmcl.2011.02.039. (i) Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P. An Eco-Friendly Approach for the Synthesis of α-Aminophosphonates Using Ionic Liquids. Green Chem. 2002, 4, 436–438. doi: 10.1039/b203934f. (j) Laschat, S.; Kunz, H. Carbohydrates as Chiral Templates: Stereoselective Synthesis of (R)- and (S)-α-Aminophosphonic Acid Derivatives. Synthesis. 1992, 1992, 90. doi: 10.1055/s-1992-3415. (k) Hossein, G.; Afsaneh, R.; Hamid, R. E. Z. Highly Efficient Solvent Free Synthesis of α-Aminophosphonates Catalyzed by Recyclable Nano-Magnetic Sulfated Zirconia (Fe 3 O 4 @ZrO 2 /so 42−). RSC Adv. 2016, 6, 16046–16054. doi: 10.1039/C5RA13173A.
  • (a) Javad, S.-G.; Eshteghal, F.; Shahbazi-Alavi, H. A Facile One-Pot Ultrasound Assisted for an Efficient Synthesis of Benzo[g]Chromenes Using Fe3O4/Polyethylene Glycol (PEG) Core/Shell Nanoparticles. Ultrason. Sonochem. 2016, 33, 99–105. doi: 10.1016/j.ultsonch.2016.04.025. (b) Manohar, B.; Divya, C.; Bhalchandra, M. B. One-Step Sonochemical Irradiation Dependent Shape Controlled Crystal Growth Study of Gold Nano/Microplates with High Catalytic Activity in Degradation of Dyes. Chemistry Select 2016, 1, 504–512. doi: 10.1016/j.ultsonch.2016.04.025. (c) Manohar, B.; Divya, C.; Bhalchandra, M. B. Ultrasound Assisted Synthesis of Gold Nanoparticles as an Efficient Catalyst for Reduction of Various Nitro Compounds. Chemistry Select. 2017, 2, 1225–1231. doi: 10.1002/slct.201600044.
  • Hui, Z.; Deren, Y.; Yujie, J.; Xiangyang, M.; Jin, X.; Duanlin, Q. Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process. J. Phys. Chem. B. 2004, 108, 3955–3958. doi: 10.1021/jp036826f.
  • Shilpa, J.; Narayan, K.; Akshara, S.; Kothari, D. C.; Satyendra, M.; Navinchandra, G. S. Ammonia Detection of 1-D ZnO/Polypyrrole Nanocomposite: Effect of CSA Doping and Their Structural, Chemical, Thermal and Gas Sensing Behavior. Appl. Surf. Sci. 2017, 396, 1317–1325. doi: 10.1016/j.apsusc.2016.11.154.
  • Navinchandra, G. S.; Shilpa, J.; Narayan, K.; Akshara, S.; Kothari, D. C.; Satyendra, M. Synthesis of ZnO Nanopencils Using Wet Chemical Method and Its Investigation as LPG Sensor. Appl. Surf. Sci. 2016, 390, 17–24.doi: 10.1016/j.apsusc.2016.08.050.
  • Chetan, K. K.; Vardhan, B. S.; Ganesh, U. C. Sulfated Polyborate Catalyzed Kabachnik-Fields Reaction: An Efficient and Eco-Friendly Protocol for Synthesis of α-Amino Phosphonates. Tetrahedron Lett. 2017, 58, 694–698. doi: 10.1016/j.tetlet.2017.01.022.
  • Xiao-Chuan, L.; Shan-Shan, G.; De-Yun, Z.; Yue-Hai, Y.; Qi, S. Highly Efficient Synthesis of α-Aminophosphonates Catalyzed by Hafnium(IV) Chloride. Tetrahedron Lett. 2016, 57, 1782–1785. doi: 10.1016/j.tetlet.2016.03.033.
  • Jie, W.; Wei, S.; Hong-Guang, X.; Xiaoyu, S. A Facile and Highly Efficient Route to Alpha-Amino Phosphonates via Three-Component Reactions Catalyzed by Mg(ClO4)2 or Molecular Iodine. Org. Biomol. Chem. 2006, 4, 1663–1666. doi: 10.1039/B602536F.
  • Malek, T. M.; Sayyed, M. H. K.; Nourollah, H.; Mohsen, R.; Seyed, S. S.; Zahra, S.; Nariman, M. An Efficient Synthesis of α-Amino Phosphonates Using Silica Sulfuric Acid as a Heterogeneous Catalyst. Heteroatom Chem. 2009, 20, 316–318. doi: 10.1002/hc.20543.
  • Hosseini-Sarvari, M. TiO2 as a New and Reusable Catalyst for One-Pot Three-Component Syntheses of α-Aminophosphonates in Solvent-Free Conditions. Tetrahedron. 2008, 64, 5459–5466. doi:10.1016/j.tet.2008.04.016
  • Mazaahir, K.; Saurav, B.; Neeraj, M.; Arti, J.; Ajeet, K.; Subho, M. Catal. Sci. Technol. 2011, 1, 426–430.doi: 10.1055/s-2007-980365.
  • Mohammad, Z. K.; Farnaz, M.; Hassan, M. ZnO Nanoparticles as an EfficientCatalyst for the One-Pot Synthesis of α-AminoPhosphonates. Synlett. 2009, 2009, 1326–1330.doi: 10.1055/s-0028-1088135.
  • Aniruddha, P.; Dinkar, S. P.; Bhalchandra, M. B. Mater. Lett. 2012, 6, 50–53. doi: 10.1016/j.matlet.2012.07.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.