Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 19
168
Views
8
CrossRef citations to date
0
Altmetric
Articles

MgSiO3 NPs catalyzed intramolecular cycloaddition reaction: A simple and stereoselective synthesis of unprecedented julolidine analogs

, , , , , & show all
Pages 2485-2495 | Received 12 Apr 2018, Published online: 10 Oct 2018

References

  • Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Graphene-Based Nanomaterials for Drug and/or Gene Delivery, Bioimaging, and Tissue Engineering. Drug Discov. Today. 2017, 22, 1302–1317. DOI: 10.1016/j.drudis.2017.04.002.
  • Woo, H.; Kang, H.; Kim, A.; Jang, S.; Park, J.; Park, S.; Kim, B.-S.; Song, H.; Park, K. Azide-Alkyne Huisgen [3 + 2] Cycloaddition Using CuO Nanoparticles. Molecules. 2012, 17, 13235–13252. DOI: 10.3390/molecules171113235.
  • Veerakumar, P.; Velayudham, M.; Lu, K. L.; Rajagopal, S. Highly Dispersed Silica-Supported Nanocopper as an Efficient Heterogeneous Catalyst: application in the Synthesis of 1,2,3-Triazoles and Thioethers. Catal. Sci. Technol. 2011, 1, 1512–1525. DOI: 10.1039/C1CY00300C.
  • Hudson, R.; Li, C. J.; Moores, A. Magnetic Copper–Iron Nanoparticles as Simple Heterogeneous Catalysts for the Azide–Alkyne Click Reaction in Water. Green Chem. 2012, 14, 622–624. DOI: 10.1039/C2GC16421C.
  • Kaboudin, B.; Mostafalu, R.; Yokomatsu, T. Fe3O4 Nanoparticle-Supported Cu(II)-β-Cyclodextrin Complex as a Magnetically Recoverable and Reusable Catalyst for the Synthesis of Symmetrical Biaryls and 1,2,3-Triazoles from Aryl Boronic Acids. Green Chem. 2013, 15, 2266–2274. DOI: 10.1039/C3GC40753E.
  • Lee, B. S.; Yi, M.; Chu, S. Y.; Lee, J. Y.; Won, K.; Lee, H. R.; Kang, K. R.; Kim, W. S.; Lim, H. B.; Lee, J.; et al. Copper Nitride Nanoparticles Supported on a Superparamagnetic Mesoporous Microsphere for Toxic-Free Click Chemistry. Chem. Commun. 2010, 46, 3935–3937. DOI: 10.1039/C001255F.
  • Kanagarajan, H.; Gunabalan, M.; Amir, K.; Narayanan, A.; Rajesh, S.; Selvaraj, M. R. Function of Nanocatalyst in Chemistry of Organic Compounds Revolution: An Overview. J. Nanomater. 2013, 2013, 1–23. DOI: 10.1155/2013/341015.
  • Wang, L.; Cai, C. Reusable Polymer-Supported Copper Catalyst for One-Pot Synthesis of 1-Alkyl- and 1-Aryl-1,2,3- Triazoles: green, Simple, and Effective. Green Chem. Lett. Rev. 2010, 3, 121–125. DOI: 10.1080/17518251003591771.
  • Mahyar, M.; Nikta, S.; Amir, K.; Saeid, Z.; Aidin, L.; Matin, S. M.; Sadrnezhaad, S. K. 3D Bundles of Self-Assembled Lanthanum Hydroxide Nanorods via a Rapid Microwave-Assisted Route. J. Alloys Compd. 2009, 473, 283–287. DOI: 10.1016/j.jallcom.2008.05.052.
  • Firouz, M. M.; Vahid, S.; Sepideh, K.; Seyed, E. A. A Novel Highly Dispersive Magnetic Nanocatalyst in Water: Glucose as an Efficient and Green Ligand for the Immobilization of Copper(II) for the Cycloaddition of Alkynes to Azides. RSC Adv. 2016, 6, 80234–80243. DOI: 10.1039/C6RA17137K.
  • Rafique, U.; Abu, T.; Meenakshi, C.; Samarjeet, S.; Kaushik, M. Polymer Immobilized Cu(I) Formation and Azide-Alkyne Cycloaddition: A One Pot Reaction. Sci. Rep. 2015, 5, 9632. DOI: 10.1038/srep09632.
  • Regina, B.; Bernd, F. S. Advancements in the Mechanistic Understanding of the Copper-Catalyzed Azide–Alkyne Cycloaddition. Beilstein J. Org. Chem. 2013, 9, 2715–2750. DOI: 10.3762/bjoc.9.308.
  • Sreenivasarao, P.; Debasish, D.; Jyotirmayee, D. A Magnetoclick Imidazolidinone Nanocatalyst for Asymmetric 1,3‐Dipolar Cycloadditions. Adv. Synth. Catal. 2013, 355, 3532–3538. DOI: 10.1002/adsc.201300624.
  • Pavel, A.; Yanina, M.; Benjamin, R.; K.; David, A.; J.; Miguel, Y.; Francisco, A.; Andrew, E.; H.; W. New Routes to Cu(I)/Cu Nanocatalysts for the Multicomponent Click Synthesis of 1,2,3-Triazoles. Nanoscale 2012, 5, 342–350. DOI: 10.1039/c2nr32570e.
  • Anne, L. S.; Ata, M.; Frank, R.; Bernd, F. S. Dinuclear Thiazolylidene Copper Complex as Highly Active Catalyst for Azid–Alkyne Cycloadditions. Beilstein J. Org. Chem. 2016, 12, 1566–1572. DOI: 10.3762/bjoc.12.151.
  • Ángel, C.; M.; Victoria, G.; Antonio de la, H. Diels–Alder Reactions in Confined Spaces: The Influence of Catalyst Structure and the Nature of Active Sites for the Retro-Diels–Alder Reaction. Beilstein J. Org. Chem. 2016, 12, 2181–2188. DOI: 10.3762/bjoc.12.208.
  • Nagabhushana, H.; Nagabhushana, B. M.; Umesh, B.; Premkumar, H. B.; Nalina, A.; Gundu Rao, T. K.; Chakradhar, R. P. S. Thermoluminescence and Defect Study of MgSiO3 Ceramics. Philos. Mag. 2010, 90, 1567–1574. DOI: 10.1080/14786430903413367.
  • Mitchell, M. B. D.; Jackson, D.; James, P. F. Low-Density Forsterite (Mg2SiO4) Powders Prepared from Modified Alkoxides. J. Solgel Sci. Technol. 2003, 26, 777–782. DOI: 10.1023/A:1020722926865.
  • Kosanovic, C.; Stubicar, N.; Tomasic, N.; Bermanec, V.; Stubicar, M. Synthesis of a Forsterite Powder by Combined Ball Milling and Thermal Treatment. J. Alloys Compd. 2005, 389, 306–309. DOI: 10.1016/j.jallcom.2004.08.015.
  • Tsai, M. T. Preparation and Crystallization of Forsterite Fibrous Gels. J. Eur. Ceram. Soc. 2003, 23, 1283–1291. DOI: 10.1016/S0955-2219(02)00305-9.
  • Klug, P.; Alexander, L. E. X-Ray Diffraction Procedure; Wiley: New York, 1954.
  • Williamson, G. K.; Hall, W. H. X-Ray Line Broadening from Filed Aluminium and wolframL'elargissement Des Raies De Rayons x Obtenues Des Limailles D'aluminium Et De tungsteneDie Verbreiterung Der Roentgeninterferenzlinien Von Aluminium- Und Wolframspaenen. Acta Metall. 1953, 1, 22–31. DOI: 10.1016/0001-6160(53)90006-6.
  • Chandrabose, K.; Crystal, L.; Joshua, M.; Roopali, M.; Esther, A. S.; Kodye, L. A.; Satyanarayana, R. P.; Upender, M.; Narayanan, K. N.; Piyush, T.; et al. IND-2, a Pyrimido[1″,2″:1,5]Pyrazolo[3,4-b]Quinoline Derivative, Circumvents Multi-Drug Resistance and Causes Apoptosis in Colon Cancer Cells. Bioorg. Med. Chem. 2015, 23, 602–611. DOI: 10.1016/j.bmc.2014.11.043.
  • Ehab, M. G.; Asmaa, E. K.; Afaf, A. E. Synthesis and Anticancer Activity of Novel Tetrahydroquinoline and Tetrahydropyrimidoquinoline Derivatives. Med. Chem. Res. 2015, 24, 3387–3397. DOI: 10.1007/s00044-015-1388-7.
  • Faidallah, H. M.; Rostom, S. A. F. Synthesis, in Vitro Antitumor Evaluation and DNA-Binding Study of Novel Tetrahydroquinolines and Some Derived Tricyclic and Tetracyclic Ring Systems. Eur. J. Med. Chem. 2013, 63, 133–143. DOI: 10.1016/j.ejmech.2013.02.006.
  • Katritzky, A. R.; Rachwal, B.; Rachwal, S.; Abboud, K. Convenient Synthesis of Julolidines Using Benzotriazole Methodology. J. Org. Chem. 1996, 61, 3117–3126. DOI: 10.1021/jo9519118.
  • Kim, K. B.; You, D. M.; Jeon, J. H.; Yeon, Y. H.; Kim, J. H.; Kim, C. A Fluorescent and Colorimetric Chemosensor for Selective Detection of Aluminum in Aqueous Solution. Tetrahedron Lett. 2014, 55, 1347–1352. DOI: 10.1016/j.tetlet.2014.01.021.
  • Prostota, Y.; Kovtun, Y. P. Novel Method for Synthesis of 2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-Diquinolizino[1,9-Bc:1′,9′-Hi] Xanthylium Perchlorate. Chem. Heterocycl. Compd. 2003, 39, 1537–1538. DOI: 10.1023/B: doi:COHC.0000014425.31467.09.
  • Noh, J. Y.; Kim, S.; Hwang, I. H.; Lee, G. Y.; Kang, J.; Kim, S. H.; Min, J.; Park, S.; Kim, C.; Kim, J. Solvent-Dependent Selective Fluorescence Assay of Aluminum and Gallium Ions Using Julolidine-Based Probe. Dyes Pigm. 2013, 99, 1016–1021. DOI: 10.1016/j.dyepig.2013.07.035.
  • Avo, J.; Petro, V.; Basilio, N.; Parola, A. J.; Pina, F. Evidence against the Twisted Intramolecular Charge Transfer (TICT) Model in 7-Aminoflavylium Derivatives. Dyes Pigm. 2016, 135, 86–93. DOI: 10.1016/j.dyepig.2016.06.007.
  • Swagata, B.; Kaishap, P. P.; Sanjib, G. Ru(II)-Catalyzed C–H Activation and Annulation of Salicylaldehydes with Monosubstituted and Disubstituted Alkynes. Chem. Commun. 2016, 52, 13004–13007. DOI: 10.1039/C6CC07204F.
  • Park, G. J.; Hwang, I. H.; Song, E. J.; Kim, H.; Kim, C. A Colorimetric and Fluorescent Sensor for Sequential Detection of Copper Ion and Cyanide. Tetrahedron. 2014, 70, 2822–2828. DOI: 10.1016/j.tet.2014.02.055.
  • Zhang, S.; Fan, J.; Zhang, S.; Wang, J.; Wang, X.; Du, J.; Peng, X. Lighting up Fluoride Ions in Cellular Mitochondria Using a Highly Selective and Sensitive Fluorescent Probe. Chem. Commun. 2014, 50, 14021–14024. DOI: 10.1039/C4CC05094K.
  • Choi, Y. W.; You, G. R.; Lee, J. J.; Kim, C. Turn-on Fluorescent Chemosensor for Selective Detection of Zn2 + in an Aqueous Solution: Experimental and Theoretical Studies. Inorg. Chem. Commun. 2016, 63, 35–38. DOI: 10.1016/j.inoche.2015.11.012.
  • Vedejs, E.; Piotrowski, D. W.; Tucci, F. C. Oxazolium-Derived Azomethine Ylides. External Oxazole Activation and Internal Dipole Trapping in the Synthesis of an Aziridinomitosene. J. Org. Chem. 2000, 65, 5498–5505. DOI: 10.1021/jo0001277.
  • Pandey, G.; Sahoo, A. K.; Bagul, T. D. [3 + 2]-Cycloaddition of Nonstabilized Azomethine Ylides. 10. An Efficient Strategy for the Construction of x-Azatricyclo [m.n.0.0a, b] Alkanes by Intramolecular Cycloaddition of Cyclic Azomethine Ylide. Org. Lett. 2000, 2, 2299–2301. DOI: 10.1021/ol006070s.
  • Vedejs, E.; Klapars, A.; Naidu, B. N.; Piotrowski, D. W.; Tucci, F. C. Enantiocontrolled Synthesis of (1S,2S)-6-Desmethyl-(Methylaziridino)Mitosene. J. Am. Chem. Soc. 2000, 122, 5401–5404. DOI: 10.1021/ja994504c.
  • Coldham, I.; Crapnell, K. M.; Moseley, J. D.; Rabot, R. Intramolecular Azomethine Ylide Cycloaddition Reactions to Give Octahydroindoles. J. Chem. Soc, Perkin Trans. 1. 2001, 15, 1758–1763. DOI: 10.1039/B104390K.
  • Novikov, M. S.; Khlebnikov, A. F.; Besedina, O. V.; Kostikov, R. R. The First Example of Intramolecular Cycloaddition of Carbene-Derived Azomethine Ylides in a Domino Reaction of Difluorocarbene with Schiff Bases. Tetrahedron Lett. 2001, 42, 533–535. DOI: 10.1016/S0040-4039(00)02105-5.
  • Ghoshal, A.; Sarkar, A. R.; Senthil Kumaran, R.; Hegde, S.; Manickam, G.; Jayashankaran, J. A Facile Stereoselective Synthesis of Julolidine Hybrid Analogs via Domino Knoevenagel Intramolecular Hetero Diels–Alder Reaction. Tetrahedron Lett. 2012, 53, 1748–1752. DOI: 10.1016/j.tetlet.2012.01.103.
  • Hegde, S.; Jayashankaran, J.; Ghosal, A.; Prasanna, T. S. R.; Shivaraj, Y.; Mohana Raju, K. A Facile One‐Pot Synthesis of Pyrrolo [1, 2‐a] Indoles by Intramolecular1,3‐Dipolar Cycloaddition under Neat‐Microwave Irradiation. J. Heterocycl. Chem. 2013, 50, 442–449. DOI: 10.1002/jhet.1661.
  • (a) Ardill, H.; Grigg, R.; Sridharan, V.; Surendrakumar, S. X = Y-ZH Systems as Potential 1,3-Dipoles: Part 19. Intramolecular Cycloadditions of Non-Stabilised Azomethine Ylides Generated via the Decarboxylative Route from α- Amino Acids. Tetrahedron. 1988, 44, 4953–4966. DOI: 10.1016/S0040-4020(01)86199-8. (b) Grigg, R.; Aly, M. F.; Sridharan, V.; Thianpatanagul, S. Decarboxylative Transamination. A New Route to Spirocyclic and Bridgehead-Nitrogen Compounds. Relevance to α-Amino Acid Decarboxylases. J. Chem. Soc. Chem. Commun. 1984, 3, 182–183. DOI: 10.1039/C39840000182. (c) Kanemasa, S.; Sakamoto, K.; Tsuge, O. Nonstabilized Azomethine Ylides Generated by Decarboxylative Condensation of α-Amino Acids. Structural Variation, Reactivity, and Stereoselectivity. Bull. Chem. Soc. Jpn. 1989, 62, 1960–1968. DOI: 10.1246/bcsj.62.1960. (d) Snider, B. B.; O'Hare, S. M. Synthesis of the Hindered N, N, N′-Trisubstituted Guanidine Moiety of Martinelline and Martinellic Acid. Tetrahedron Lett. 2001, 42, 2455–2458. DOI: 10.1016/S0040-4039(01)00206-4. (e) Bolognesi, M. L.; Andrisano, V.; Bartolini, M.; Minarini, A.; Rosini, M.; Tumiatti, V.; Melchiorre, C. Hexahydrochromeno[4,3-b] Pyrrole Derivatives as Acetylcholinesterase Inhibitors. J. Med. Chem. 2001, 44, 105–109. DOI: 10.1021/jm000991r. (f) Bakthadoss, M.; Sivakumar, N.; Sivakumar, G.; Murugan, G. Highly Regio- and Stereoselective Synthesis of Tricyclic Frameworks Using Baylis–Hillman Derivatives. Tetrahedron Lett. 2008, 49, 820–823. DOI: 10.1016/j.tetlet.2007.11.210. (g) Ramesh, E.; Raghunathan, R. A Facile Synthesis of Chromeno[4,3-b] Pyrroles Derived from Allyl Derivatives of Baylis–Hillman Adducts through Intramolecular 1,3-Dipolar Cycloaddition Using Ultrasonication. Tetrahedron Lett. 2008, 49, 1125–1128. DOI: 10.1016/j.tetlet.2007.12.066. (h) Kathiravan, S.; Vijayarajan, D.; Raghunathan, R. Novel Synthesis of Naphtho[2,1-b] Pyrano Pyrrolizidines and Indolizidines through Intramolecular 1,3-Dipolar Cycloaddition Reaction. Tetrahedron Lett. 2010, 51, 3065–3070. DOI: 10.1016/j.tetlet.2010.04.017. (i) Parmar, N. J.; Pansuriya, B. R.; Labana, B. M.; Kant, R.; Gupta, V. K. A Convenient 1,3-Dipolar Cycloaddition–Reduction Synthetic Sequence from 2-Allyloxy-5-Nitro-Salicylaldehyde to Aminobenzopyran-Annulated Heterocycles. RSC Adv. 2013, 3, 17527–17539. DOI: 10.1039/C3RA42220H. (j) Rajesh, R.; Raghunathan, R. Expeditious Synthesis of Novel β-Lactam-Substituted Polycyclic Fused Chromeno Pyrrole Derivatives from MBH Carbonates by Intramolecular [3 + 2]-Cycloaddition Reaction. Synlett. 2013, 24, 2107–2113. DOI: 10.1055/s-0033-1339519.
  • Gompel, J. V.; Schuster, G. B. Chemiluminescence of Organic Peroxides: intramolecular Electron-Exchange Luminescence from a Secondary Perester. J. Org. Chem. 1987, 52, 1465–1468. DOI: 10.1021/jo00384a015. doi:10.1021/jo00384a015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.