Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 22
388
Views
48
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Synthesis of seven and higher membered nitrogen containing heterocycles using photochemical irradiation

Pages 2815-2849 | Received 17 May 2018, Accepted 13 Jul 2018, Published online: 08 Oct 2018

References

  • Balaban, A. T.; Oniciu, D. C.; Katritzky, A. R. Aromaticity as a Cornerstone of Heterocyclic Chemistry. Chem. Rev. 2004, 104, 2777.
  • Martins, M.; Cunico, W.; Pereira, C.; Sinhorin, A.; Flores, A.; Bonacorso, H.; Zanatta, N. 4-Alkoxy-1,1,1-Trichloro-3-Alken-2-Ones: Preparation and Applications in Heterocyclic Synthesis. Cos. 2004, 1, 391.
  • (a) Druzhinin, S. V.; Balenkova, E. S.; Nenajdenko, V. G. Recent Advances in the Chemistry of α,β-Unsaturated Trifluoromethylketones. Tetrahedron. 2007, 63, 7753. DOI:10.1016/j.tet.2007.04.029. (b) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of S-Heterocycles. Catal. Rev. 2015, 57, 478. DOI:10.1080/01614940.2015.1082824. (c) Kaur, N. Synthesis of Six- and Seven-Membered Heterocycles under Ultrasound Irradiation. Synth. Commun. 2018, 48, 1235. DOI:10.1080/00397911.2018.1434894. (d) Kaur, N. Photochemical Reactions as Key Steps in Five-Membered N- Heterocycle Synthesis. Synth. Commun. 2018, 48, 1259.
  • (a) Kaur, N. Inorg. Chem. Commun 2014, 49, 86. (b) Kaur, N.; Kishore, D. Nitrogen-Containing Six-Membered Heterocycles: Solid-Phase Synthesis. Synth. Commun. 2014, 44, 1173. DOI:10.1080/00397911.2012.760129. (c) Kaur, N.; Kishore, D. Solid-Phase Synthetic Approach toward the Synthesis of Oxygen-Containing Heterocycles. Synth. Commun. 2014, 44, 1019. DOI:10.1080/00397911.2012.760131. (d) Kaur, N. Microwave-Assisted Synthesis of Five-Membered O-Heterocycles. Synth. Commun. 2014, 44, 3483. DOI:10.1080/00397911.2013.800213. (e) Kaur, N. Microwave-Assisted Synthesis of Five-Membered O,N-Heterocycles. Synth. Commun. 2014, 44, 3509. DOI:10.1080/00397911.2013.800214. (f) Kaur, N. Microwave-Assisted Synthesis of Five-Membered O,N,N-Heterocycles. Synth. Commun. 2014, 44, 3229. DOI:10.1080/00397911.2013.798666. (g) Trost, B. The Atom Economy-a Search for Synthetic efficiency. Science. 1991, 254, 1471. (h) Kaur, N. Photochemical Reactions for the Synthesis of Six-Membered O-Heterocycles. Cos. 2018, 15, 298.
  • Seebach, D. Angew. Chem. 1990, 102, 1363; Angew. Chem. Int. Ed. Engl. 1990, 29, 1320.
  • (a) Hoberg, J. O. Synthesis of Seven-Membered Oxacycles. Tetrahedron. 1998, 54, 12631. DOI:10.1016/S0040-4020(98)00596-1. (b) Kaur, N. Metal Catalysts: applications in Higher-Membered N-Heterocycles Synthesis. J. Iran. Chem. Soc. 2015, 12, 9. DOI:10.1007/s13738-014-0451-5. (c) Kaur, N. Synth. Commun. 2015, 45, 1269. (d) Kaur, N. Synthesis of Fused Five-Membered N,N-Heterocycles Using Microwave Irradiation. Synth. Commun. 2015, 45, 1379. DOI:10.1080/00397911.2013.828078. (e) Kaur, N. Microwave-Assisted Synthesis of Seven-Membered S-Heterocycles. Synth. Commun. 2014, 44, 3201. DOI:10.1080/00397911.2013.798665. (f) Kaur, S.; Kaur, G. A Review of Load Balancing Strategies for Distributed Systems. Ijca. 2015, 121, 45. DOI:10.5120/21644-4985. (g) Kaur, N. Polycyclic Six-Membered N-Heterocycles: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 35. DOI:10.1080/00397911.2013.813549. (h) Kaur, N. Ruthenium Catalysis in Six-Membered O-Heterocycles Synthesis. Synth. Commun. 2018, 48, 1551. DOI:10.1080/00397911.2018.1457698. (i) Kaur, N. Green Synthesis of Three- to Five-Membered O-Heterocycles Using Ionic Liquids. Synth. Commun. 2018, 48, 1588. DOI:10.1080/00397911.2018.1458243. (j) Kaur, N. Ultrasound-Assisted Green Synthesis of Five-Membered O- and S-Heterocycles. Synth. Commun. 2018, 48, 1715.
  • (a) Kaur, N. J. Heterocycl. Chem. 2015, 52, 953. (b) Kaur, N. Ethyl Azodicarboxylate. Org. Synth. 2015, 0, 14–531. DOI:10.15227/orgsyn.000.0014. (c) Kaur, N. Ethyl Azodicarboxylate. Org. Synth. 2015, 0, 14–972. DOI:10.15227/orgsyn.000.0014. (d) Kaur, N. Ionic Liquids: Promising but Challenging Solvents for the Synthesis of NHeterocycles. Mroc. 2017, 14, 3. DOI:10.2174/1570193X13666161019120050. (e) Kaur, N. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2016, 46, 983. (f) Kaur, N. Applications of Gold Catalysts for the Synthesis of Five-Membered O-Heterocycles. Inorg. Nano-Met. Chem. 2017, 47, 163. DOI:10.1080/15533174.2015.1068809. (g) Stach, H.; Hesse, M. Tetrahedron Report Number 230. Tetrahedron. 1988, 44, 1573.
  • Evans, P. A.; Holmes, A. B. Medium Ring Nitrogen Heterocyles. Tetrahedron. 1991, 47, 9131.
  • Dowd, P.; Zhang, W. Free Radical-Mediated Ring Expansion and Related Annulations. Chem. Rev. 1993, 93, 2091.
  • (a) Albini, A.; Fagnoni, M. Green Chemistry and Photochemistry Were Born at the Same Time. Green Chem. 2004, 6, 1. DOI:10.1039/b309592d. (b) Kaur, N. Microwave-Assisted Sythesis: Fused Five-Membered N-Heterocycles. Syn. Commun. 2015, 45, 789. DOI:10.1080/00397911.2013.824984. (c) Kaur, N. Six-Membered Heterocycles with Three and Four N-Heteroatoms: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 151. DOI:10.1080/00397911.2013.813550. (d) Kaur, N. Synth. Commun. 2015, 45, 173. (e) Kaur, N. Microwave-Assisted Synthesis of Fused Polycyclic Six-Membered N-Heterocycles. Synth. Commun. 2015, 45, 273. DOI:10.1080/00397911.2013.816735. (f) Kaur, N. Review of Microwave-Assisted Synthesis of Benzo-Fused Six-Membered N,N-Heterocycles. Synth. Commun. 2015, 45, 300. DOI:10.1080/00397911.2013.816736. (g) Kaur, N.; Kishore, D. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-Benzodiazepine. Synth. Commun. 2014, 44, 1375.
  • Albini, A.; Fagnoni, M.; Mella, M. Environment-Friendly Organic Synthesis. The Photochemical Approach. Pure Appl. Chem. 2000, 72, 1321.
  • (a) Kaur, N. Environmentally Benign Synthesis of Five-Membered 1,3-N,N-Heterocycles by Microwave Irradiation. Syn. Commun. 2015, 45, 909.
  • (a) Dalko, P. I.; Moisan, L. In the Golden Age of organocatalysis. Angew. Chem. Int. Ed. Engl. 2004, 43, 5138.
  • List, B. Proline-Catalyzed Asymmetric Reactions. Tetrahedron. 2002, 58, 5573.
  • (a) Schreiner, P. R. Metal-Free Organocatalysis through Explicit Hydrogen Bonding Interactions. Chem. Soc. Rev. 2003, 32, 289. (b) Jean-Gerard, L.; Pauvert, M.; Collet, S.; Guingant, A.; Evain, M. A New Enlargement Methodology for the Preparation of 2H-1- and 2H-3-Benzazepin-2-One Derivatives. Tetrahedron. 2007, 63, 11250.
  • (a) Czarnik, A. W. Guest Editorial. Acc. Chem. Res. 1996, 29, 112.
  • Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew. Chem. 2000, 112, 46; Angew. Chem. Int. Ed. 2000, 39, 44.
  • (a) Kaur, N. Catal. Rev. 2015, 57, 1. (b) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six-Membered O,O-Heterocycles. Synth. Commun. 2014, 44, 3082. DOI:10.1080/00397911.2013.796384. (c) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six-Membered O-Heterocycles. Synth. Commun. 2014, 44, 3047. DOI:10.1080/00397911.2013.796383. (d) Wender, P. A.; Croatt, M. P.; Witulski, B. Tetrahedron. 2006, 62, 7505. (e) Singh, S.; Kaur, P. IPL Visualization and Prediction Using HBase. Curr. Organocatal. 2017, 122, 910. DOI:10.1016/j.procs.2017.11.454. (f) Kaur, N. Perspectives of Ionic Liquids Applications for the Synthesis of Five- and Six-Membered O,N-Heterocycles. Synth. Commun. 2018, 48, 473.
  • (a) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res. 2008, 41, 40 DOI:10.1021/ar700155p. (b) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem. 2009, 121, 2896; Angew. Chem. Int. Ed. 2009, 48, 2854.
  • Coenjarts, C.; Scaiano, J. C. Reaction Pathways Involved in the Quenching of the Photoactivated Aromatic Ketones Xanthone and 1-Azaxanthone by Polyalkylbenzenes. J. Am. Chem. Soc. 2000, 122, 3635.
  • Lamara, K.; Smalley, R. K. 3H-Azepines and Related Systems. Part 4. Preparation of 3H-Azepin-2-Ones and 6H-Azepino[2,1-b]Quinazolin-12-Ones by Photo-Induced Ring Expansions of Aryl Azides. Tetrahedron. 1991, 47, 2277.
  • Bou-Hamdan, F. R.; Levesque, F.; O'Brien, A. G.; Seeberger, P. H. Continuous Flow Photolysis of Aryl Azides: Preparation of 3H-azepinones. Beilstein J Org Chem. 2011, 7, 1124.
  • Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I. Flow Photochemistry: Old Light through New windows. Beilstein J Org Chem. 2012, 8, 2025. DOI:10.3762/bjoc.8.229.
  • Wenk, H. H.; Sander, W. Angew. Chem. 2002, 114, 2873; Angew. Chem. Int. Ed. 2002, 41, 2742.
  • Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of compounds. Angew. Chem. Int. Ed. Engl. 2005, 44, 5188
  • Winter, D. K.; Drouin, A.; Lessard, J.; Spino, C. Photochemical Rearrangement of N-Chlorolactams: A route to N-heterocycles Through Concerted Ring Contraction. J. Org. Chem. 2010, 75, 2610. DOI:10.1021/jo100181h
  • Lattes, A.; Oliveros, E.; Riviere, M.; Belzeck, C.; Mostowicz, D.; Abramskj, W.; Piccinni-Leopardi, C.; Germain, G.; Van Meerssche, M. Photochemical and Thermal Rearrangement of Oxaziridines. Experimental Evidence in Support of the Stereoelectronic Control Theory. J. Am. Chem. Soc. 1982, 104, 3929.
  • Aube, J.; Wang, Y.; Hammond, M.; Tanol, M.; Takusagawa, F.; Velde, D. V. Synthetic Aspects of an Asymmetric Nitrogen-Insertion Process: Preparation of Chiral, Non-Racemic Caprolactams and Valerolactams. Total Synthesis of (-)-Alloyohimbane. J. Am. Chem. Soc. 1990, 112, 4879.
  • Aube, A.; Hammond, M. Directed Regiochemical Control in the Ring Expansion Reactions of a Substituted Trans-Decalone. Tetrahedron Lett 1990, 31, 2963.
  • Kantorowski, E. J.; Kurth, M. Expansion to Seven-Membered Rings. J. Tetrahedron. 2000, 56, 4317.
  • Iddon, B.; Meth-Cohn, O.; Scriven, E. F. V.; Suschitzky, H.; Gallagher, P. T. Angew. Chem., Int. Ed. Engl. 1979, 18, 900.
  • Kotzyba-Hibert, F.; Kapfer, I.; Goeldner, M. Recent Trends in Photoaffinity Labeling. Angew. Chem. Int. Ed. Engl. 1995, 34, 1296.
  • Sydnes, M. O.; Doi, I.; Ohishi, A.; Kuse, M.; Isobe, M. Determination of Solvent-Trapped Products Obtained by Photolysis of Aryl Azides in 2,2,2-Trifluoroethanol. Chem. Asian J. 2008, 3, 102.
  • Nielsen, P. E.; Buchardt, O. Photochem. Photobiol. 1982, 35, 317.
  • Reiser, A.; Bowes, G.; Horne, R. J. Photolysis of Aromatic Azides. Part 1.—Electronic Spectra of Aromatic Nitrenes and Their Parent Azides. Trans. Faraday Soc. 1966, 62, 3162.
  • Doering, W.; Odum, R. A. Ring Enlargement in the Photolysis of Phenyl Azide. Tetrahedron. 1966, 22, 81.
  • DeGraff, B. A.; Gillespie, D. W.; Sundberg, R. J. Phenyl Nitrene. Flash Photolytic Investigation of the Reaction with Secondary Amines. J. Am. Chem. Soc. 1974, 96, 7491.
  • Borden, W. T.; Gritsan, N. P.; Hadad, C. M.; Karney, W. L.; Kemnitz, C. R.; II.; Platz, M. S. The Interplay of Theory and Experiment in the Study of phenylnitrene. Acc. Chem. Res. 2000, 33, 765.
  • Gritsan, N. P.; Platz, M. S. Kinetics, Spectroscopy, and Computational Chemistry of arylnitrenes. Chem. Rev. 2006, 106, 3844.
  • Tsao, M.-L.; Platz, M. S. Photochemistry of Ortho, Ortho‘ Dialkyl Phenyl Azides. J. Am. Chem. Soc. 2003, 125, 12014.
  • Li, Y. Z.; Kirby, J. P.; George, M. W.; Poliakoff, M.; Schuster, G. B. 1,2-Didehydroazepines from the Photolysis of Substituted Aryl Azides: Analysis of Their Chemical and Physical Properties by Time-Resolved Spectroscopic Methods. J. Am. Chem. Soc. 1988, 110, 8092.
  • Sundberg, R. J.; Sloan, K. B. Acid-Promoted Aromatic Substitution Processes in Photochemical and Thermal Decompositions of Aryl Azides. J. Org. Chem. 1973, 38, 2052.
  • Budyka, M. F.; Kantor, M. M.; Alfimov, M. V. The Photochemistry of Phenyl Azide. Russ. Chem. Rev. 1992, 61, 25.
  • Gritsan, N. P.; Pritchina, E. A. The Mechanism of Photolysis of Aromatic Azides. Russ. Chem. Rev. 1992, 61, 500.
  • Lamara, K.; Redhouse, A. D.; Smalley, R. K.; Thompson, J. R. 3H-Azepines and Related Systems. Part 5. Photo-Induced Ring Expansions of o-Azidobenzonitriles to 3-Cyano- and 7-Cyano-3H- Azepin-2(1H)-Ones. Tetrahedron 1994, 50, 5515.
  • (a) Koyama, K.; Takeuchi, H. J. Chem. Soc., Perkin Trans. 1 1982, 1269. 35. (b) O’Hagan, D. Nat. Prod. Rep. 1997, 14, 637.
  • Evans, P. A.; Holmes, B. Medium Ring Nitrogen Heterocyles. Tetrahedron. 1991, 47, 9131.
  • Robl, J. A.; Sulsky, R.; Sieber-McMaster, E.; Ryono, D. E.; Cimarusti, M. P.; Simpkins, L. M.; Karanewsky, D. S.; Chao, S.; Asaad, M. M.; Seymour, A. A.; et al. Vasopeptidase Inhibitors: Incorporation of Geminal and Spirocyclic Substituted Azepinones in Mercaptoacyl dipeptides. J. Med. Chem. 1999, 42, 305.
  • Knobloch, K.; Eberbach, W. Dihydro. Org. Lett. 2000, 2, 1117.
  • Knobloch, K.; Koch, J.; Keller, M.; Eberbach, W. The Dipolar Route to Azepin-3-One Derivatives by Heterocyclization of Linear and Monocyclic Enallenyl Nitrones as the Key Step. Eur. J. Org. Chem. 2005, 2005, 2715.
  • Masaki, M.; Fukui, K.; Kita, J. Deoxygenation of Nitrobenzene by Tributylphosphine in the Presence of Alcohols. Synthesis of 2-Alkoxy-3 H -Azepines. BCSJ. 1977, 50, 2013.
  • Atherton, F. R.; Lambert, R. W. Nitrenes Generated from Nitro-Compounds by Various Phosphorus Reagents in Heterocyclic Synthesis. A Convenient Route to Substituted 3H-Azepines. J. Chem. Soc, Perkin Trans. 1 1973, 0, 1079.
  • Endo, Y.; Kataoka, K-i.; Haga, N.; Shudo, K. Acid-Catalyzed Rearrangement of O-(2-Arylphenyl)Hydroxylamines to Aryldihydroazepinones. Tetrahedron Lett. 1992, 33, 3339.
  • Reissig, H.-U.; Bottcher, G.; Zimmer, R. New 1,3-Dihydroazepin-2-One Derivatives by [3,3]-Sigmatropic Rearrangement of Suitably Substituted 2-Alkenylcyclopropyl Isocyanates. Can. J. Chem. 2004, 82, 166.
  • O'Brien, A. G.; Levesque, F.; Seeberger, P. H. Continuous Flow Thermolysis of Azidoacrylates for the Synthesis of Heterocycles and Pharmaceutical Intermediates. Chem. Commun. 2011, 47, 2688.
  • O’Brien, A. G.; Levesque, F.; Suzuki, Y.; Seeberger, P. H. Chim. Oggi. 2011, 29, 57.
  • Leyva, E.; Platz, M. S.; Persy, G.; Wirz, J. Photochemistry of Phenyl Azide: The Role of Singlet and Triplet Phenylnitrene as Transient Intermediates. J. Am. Chem. Soc. 1986, 108, 3783.
  • Hayes, J. C.; Sheridan, R. S. The IR Spectrum of Triplet Phenylnitrene. On the Origin of Didehydroazepine in Low Temperature Matrices. J. Am. Chem. Soc. 1990, 112, 5879.
  • Schrock, A. K.; Schuster, G. B. Photochemistry of Phenyl Azide: Chemical Properties of the Transient Intermediates. J. Am. Chem. Soc. 1984, 106, 5228.
  • Born, R.; Burda, C.; Senn, P.; Wirz, J. Transient Absorption Spectra and Reaction Kinetics of Singlet Phenylnitrene and Its 2,4,6-Tribromo Derivative in Solution. J. Am. Chem. Soc. 1997, 119, 5061.
  • Gritsan, N. P.; Zhu, Z.; Hadad, C. M.; Platz, M. S. Laser Flash Photolysis and Computational Study of Singlet Phenylnitrene. J. Am. Chem. Soc. 1999, 121, 1202.
  • Karney, W. L.; Borden, W. T. Why Does O-Fluorine Substitution Raise the Barrier to Ring Expansion of Phenylnitrene? J. Am. Chem. Soc. 1997, 119, 3347.
  • Cadogan, J. I. G.; Mackie, R. M.; Todd, M. J. Chem. Commun. (London) 1968, 0, 736.
  • Cadogan, J. I. G.; Todd, M. J. On the Mechanism of Reductive Cyclisation of Nitro-Compounds by Tervalent Organophosphorus Compounds. Chem. Commun. (London). 1967, 0, 178.
  • Cadogan, J. I. G. Reduction of Nitro- and Nitroso-Compounds by Tervalent Phosphorus Reagents. Q Rev, Chem. Soc. 1968, 22, 222.
  • Sundberg, R. J.; Das, B. P.; Smith, R. H. Photochemical Deoxygenation of Aromatic Nitro Compounds in Triethyl Phosphite. Substituent Effects and Evidence for the Involvement Aryl Nitrenes. J. Am. Chem. Soc. 1969, 91, 658.
  • Reid, S. T.; De Silva, D. Photocycloaddition of Ethyl 2,3-Dioxopyrrolidine-4-Carboxylates to Alkenes; the Synthesis of Ethyl 2,3-Dioxohexahydroazepine-6-Carboxylates. Tetrahedron Lett. 1983, 24, 1949.
  • Colman, R.; Scriven, E. F. V.; Suschitzky, H.; Thomas, D. R. Chem. Ind. 1981, 0, 249.
  • Mazzocchi, P. H.; Minamikawa, S.; Wilson, P. Competetive Photochemical.sigma.2 +.pi.2 Addition and Electron Transfer in the N-Methylphthalimide-Alkene System. J. Org. Chem. 1985, 50, 2681.
  • (a) Maruyama, K.; Kubo, Y. J. Org. Chem. 1985, 5. 1426. (b) McDermott, G.; Yoo, D. J.; Oelgemoller, M. Heterocycles. 2005, 65, 2221.
  • Mazzocchi, P. H.; Minamikawa, S.; Wilson, P.; Bowen, M.; Narian, N. Photochemical Additions of Alkenes to Phthalimides to Form Benzazepinediones. Additions of Dienes, Alkenes, Vinyl Ethers, Vinyl Esters, and an Allene. J. Org. Chem. 1981, 46, 4846.
  • Bryant, L. R. B.; Coyle, J. D. Photochemical Hydrogen Abstraction and Cyclisation in Maleimide Derivatives. Tetrahedron Lett. 1983, 24, 1841.
  • Maruyama, K.; Kubo, Y. Photo-Induced Solvent-Incorporated Addition of N-Methylphthalimide to Olefins. Reactions Promoted by Way of Initial One Electron Transfer. Chem. Lett. 1978, 7, 851.
  • Griesbeck, A. G.; Henz, A.; Peters, K.; Peters, E.-M.; von Schnering, H. G. Photo Electron Transfer Induced Macrocyclization ofN-Phthaloyl-ω-Aminocarboxylic Acids. Angew. Chem. Int. Ed. Engl. 1995, 34, 474.
  • Griesbeck, A. G.; Hoffmann, N.; Warzecha, K.-D. Photoinduced-Electron-Transfer Chemistry: From Studies on PET Processes to Applications in Natural Product Synthesis. Acc. Chem. Res. 2007, 40, 128.
  • Guastavino, J. F.; Buden, M. E.; Garcia, C. S.; Rossi, R. A. ARKIVOC. 2011, vii, 389.
  • Blanco-Lomas, M.; Caballero, A.; Campos, P. J.; González, H. F.; López-Sola, S.; Rivado-Casas, L.; Rodríguez, M. A.;.; Sampedro, D.; Photochemically Driven Addition of Iminyl Radicals to Alkynyl Fischer Carbene Complexes. Organometallics. 2011, 30, 3677. DOI:10.1021/om200438y.
  • (a) Petrov, E. S.; Terekhova, M. I.; Mirskov, R. G.; Voronkov, M. G.; Shatenstein, A. I. Dokl. Akad. Nauk SSSR. 1975, 221, 111; Chem. Abstr. 1975, 8, 155040. (b) Peisino, L. E.; Pierini, A. B. Experimental and Computational Study of 6-exo and 7-endo cyclization of aryl radicals followed by tandem S(RN)1 substitution. J. Org. Chem. 2013, 78, 4719–4729.
  • (a) Bourguet, E.; Baneres, J. L.; Girard, J. P.; Parello, J.; Vidal, J. P.; Lusinchi, X.; Declercq, J. P. Photochemical Rearrangement of Oxaziridines and Nitrones in the Hexahydroindole Series: A Convenient Synthetic Route to 1-Azabicyclo[5.2.0]Nonan-2-Ones as Novel RGD Mimetics. Org. Lett. 2001, 3, 3067. (b) Grigorev, I. A. Nitrones: Novel Strategies in Synthesis. In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis, 2nd edition, Henry Feuer, Ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007. DOI: 10.1002/9780470191552.ch2., ISBN: 978-0-471-74498-6, December 2007, p 753.
  • Zeng, Y.; Smith, B. T.; Hershberger, J.; Aube, J. Rearrangements of Bicyclic Nitrones to Lactams: Comparison of Photochemical and Modified Barton conditions. J. Org. Chem. 2003, 68, 8065.
  • Bertrand, S.; Hoffmann, N.; Humbel, S.; Pete, J. P. Diastereoselective Tandem addition-cyclization reactions of unsaturated tertiary amines initiated by photochemical electron transfer (PET). J. Org. Chem. 2000, 65, 8690.
  • Booker-Milburn, K. I.; Anson, C. E.; Clissold, C.; Costin, N. J.; Dainty, R. F.; Murray, M.; Patel, D.; Sharpe, A. Intramolecular Photocycloaddition of N-Alkenyl Substituted Maleimides: A Potential Tool for the Rapid Construction of Perhydroazaazulene Alkaloids. Eur. J. Org. Chem. 2001, 2001, 1473.
  • Pilli, R. A.; Ferreira de Oliveira, M. C. Recent Progress in the Chemistry of the Stemona Alkaloids. Nat. Prod. Rep. 2000, 17, 117.
  • (a) Booker-Milburn, K. I.; Hirst, P.; Charmant, J. P. H.; Taylor, L. H. A Rapid Stereocontrolled Entry to the ABCD Tetracyclic Core of Neotuberostemonine. Angew. Chem. Int. Ed. Engl. 2003, 42, 1642.
  • Aube, J. Oxiziridine Rearrangements in Asymmetric Synthesis Chem. Soc. Rev. 1997, 26, 269.
  • Frye, S. V.; Haffner, C. D.; Maloney, P. R.; Mook, R. A.; Jr., Dorsey, G. F.; Jr., Hiner, R. N.; Cribbs, C. M.; Wheeler, T. N.; Ray, J. A.; Andrews, R. C.; et al. ChemInform Abstract: 6-Azasteroids: Structure-Activity Relationships for Inhibition of Type 1 and 2 Human 5α-Reductase and Human Adrenal 3β-Hydroxy-. Delta.5-Steroid Dehydrogenase/3-Keto-δ5-Steroid Isomerase. J. Med. Chem. 1994, 37, 2352.
  • Frye, S. J. Mex. Chem. Soc. 2009, 53, 131.
  • Lainchbury, M. D.; Medley, M. I.; Taylor, P. M.; Hirst, P.; Dohle, W.; Booker-Milburn, K. I. A Protecting Group Free Synthesis of (+/−)-Neostenine via the [5 + 2] Photocycloaddition of Maleimides. J. Org. Chem. 2008, 73, 6497.
  • Hook, B. D. A.; Dohle, W.; Hirst, P. R.; Pickworth, M.; Berry, M. B.; Booker-Milburn, K. I. A Practical Flow Reactor for Continuous Organic photochemistry. J. Org. Chem. 2005, 70, 7558.
  • Bach, T.; Hehn, J. P. Photochemical Reactions as Key Steps in Natural Product synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 1000.
  • Gorner, H.; Oelgemoller, M.; Griesbeck, A. G. Photodecarboxylation Study of Carboxy-Substituted N-Alkylphthalimides in Aqueous Solution: Time Resolved UV − Vis Spectroscopy and Conductometry. J. Phys. Chem. A. 2002, 106, 1458.
  • Sharma, I.; Saxena, A.; Ojha, C. K.; Pardasani, P.; Pardasani, R. T.; Mukherjee, T. A Comprehensive Approach to the Photochemical Synthesis of Bioactive Compounds by the Reaction of Oxazolidine, Thiazolidine and Pyrazolidine Derivatives with Indol-2,3-Diones. J. Chem. Sci. 2002, 114, 523.
  • Prabhakar, S.; Lobo, A. M.; Oliveira, I. M. C. Photochemical Approach to the Rhoeadine Alkaloid Skeleton: synthesis of (±)-Cis-Alpinigenine. J. Chem. Soc. Chem. Commun. 1977, 0, 419.
  • Prabhakar, S.; Lobo, A. M.; Tavares, M. R.; Oliveira, I. M. C. Total Synthesis of the Alkaloids (±)-Alpinigenine and (±)-Cis-Alpinigenine. J. Chem. Soc. Perkin Trans. 1 1981, 0, 1273.
  • Griesbeck, A. G.; Oelgemoller, M.; Lex, J. Photochemistry of MTM- and MTE-Esters of ω-Phthalimido Carboxylic Acids: Macrocyclization versus Deprotection 1. J. Org. Chem. 2000, 65, 9028.
  • Thiering, S.; Sund, C.; Thiem, J.; Giesler, A.; Kopf, J. Syntheses of imido-substituted glycosans and their photocyclisation towards highly functionalised heterotricycles. Carbohydr. Res. 2001, 336, 271.
  • Hoffmann, N. Photochemical Reactions as Key Steps in Organic synthesis. Chem. Rev. 2008, 108, 1052.
  • Sashida, H.; Fujii, A.; Tsuchiya, T. Studies on Diazepines. XXIX. Syntheses of 3H- and 5H-1,4-Benzodiazepines from 3-Azidoquinolines. Chem. Pharm. Bull. 1987, 35, 4110.
  • Hollywood, F.; Khan, Z. U.; Scriven, E. V. F.; Smalley, R. K.; Suschitzky, H.; Thomas, D. R.; Hull, R. Photolysis of Quinolyl and Isoquinolyl Azides in the Presence of Methoxide Ions. Synthesis of Benzodiazepines and Pyridoazepines. J. Chem. Soc, Perkin Trans. 1. 1982, 0, 431.
  • Purvis, R.; Smalley, R. K.; Suschitzky, H.; Alkhader, M. A. 3H-Azepines and Related Systems. Part 2. The Photolyses of Aryl Azides Bearing Electron-Withdrawing Substituents. J. Chem. Soc, Perkin Trans. 1 1984, 0, 249.
  • Miller, M.; Hope, J.; Porter, W. J.; Reel, J. K.; Rubio-Esteban, A. Azepine derivatives as gamma-secretase inhibitors. U.S. Patent Appl.2010/0197660, Aug 5, 2010.
  • Kurita, J.; Iwata, K.; Tsuchiya, T. Studies on Diazepines. XXV. Syntheses of Fully Unsaturated 1,4-Oxazepines and 1H-1,4-Diazepines Using Photochemical Valence Isomerization of Tricycloheptene Systems. Chem. Pharm. Bull. 1987, 35, 3166.
  • Machida, M.; Takechi, H.; Shishido, Y.; Kanaoka, Y. Photochemical Synthesis of Multicyclic Fused Imidazolidines, Hydropyrazines, and Hydro-1,4-Diazepines. Synthesis. 1982, 1982, 1078.
  • Takechi, H.; Tateuchi(Nee Oyadomari), S.; Machida, M.; Nishibata, Y.; Aoe, K.; Sato, Y.; Kanaoka, Y. Photoreactions of Succinimides with an N-Acyl Group in the Side Chain. Synthesis and Stereochemistry of Tricyclic Pyrrolo(1,2-a)Pyrazine Ring Systems. Chem. Pharm. Bull. 1986, 34, 3142.
  • Zhao, H.; Hsu, D. C.; Carlier, P. R. Memory of Chirality: An Emerging Strategy for Asymmetric Synthesis. Synthesis. 2004, 2005, 1.
  • Griesbeck, A. G.; Kramer, W.; Lex, J. Diastereo- and Enantioselective Synthesis of Pyrrolo[1,4]Benzodiazepines through Decarboxylative Photocyclization. Angew. Chem. Int. Ed. 2001, 40, 577.
  • Fuji, K.; Kawabata, T. Memory of Chirality—a New Principle in Enolate Chemistry. Chem. Eur. J. 1998, 4, 373.
  • Griesbeck, A. G.; Kramer, W.; Bartoschek, A.; Schmickler, H. Photocyclization of 2-azabicyclo[3.3.0]octane-3-carboxylate derivatives: induced and noninduced diastereoselectivity. Org. Lett. 2001, 3, 537.
  • Reisinger, A.; Bernhardt, P. V.; Wentrup, C. Synthesis of 1,3-Diazepines and Ring Contraction to Cyanopyrroles. Org. Biomol. Chem. 2004, 2, 246.
  • Reisinger, A.; Koch, R.; Bernhardt, P. V.; Wentrup, C. 1H-1,3-Diazepines, 5H-1,3-Diazepines, 1,3-Diazepinones, and 2,4-Diazabicyclo[3.2.0]Heptenes. Org. Biomol. Chem. 2004, 2, 1227.
  • Peyrane, F.; Cesario, M.; Clivio, P. Photochemical Ring Expansion of 4-Azidouracil: A Route to 5H-1,3,5-Triazepin-2,4-Dione in the Nucleoside Series. J. Org. Chem. 2006, 71, 1742.
  • Hatanaka, Y.; Sato, Y.; Nakai, H.; Wada, M.; Mizoguchi, T.; Kanaoka, Y. Photochemistry of the Phthalimide System, 44. Photoinduced Reactions, 122. Regioselective Remote Photocyclization: Examples of a Photochemical Macrocyclic Synthesis with Sulfide-Containing Phthalimides. Liebigs Ann. Chem. 1992, 1992, 1113.
  • Griesbeck, A. G.; Mauder, H.; Muller, I.; Peters, K.; Peters, E.-M.; von Schnering, H. G. Photochemistry of N-Phthaloyl Derivatives of Methionine. Tetrahedron Lett. 1993, 34, 453.
  • Oelgemoller, M.; Griesbeck, A. G.; Lex, J.; Haeuseler, A.; Schmittel, M.; Niki, M.; Hesek, D.; Inoue, Y. Structural, CV and IR Spectroscopic Evidences for Preorientation in PET-Active Phthalimido Carboxylic Acids. Org. Lett. 2001, 3, 1593.
  • Ducray, R.; Ciufolini, M. A. Angew. Chem. 2002, 114, 4882; Angew. Chem. Int. Ed. 2002, 41, 4688.
  • Griesbeck, A. G.; Heinrich, T.; Oelgemoller, M.; Lex, J.; Molis, A. A Photochemical Route for Efficient Cyclopeptide Formation with a Minimum of Protection and Activation chemistry. J. Am. Chem. Soc. 2002, 124, 10972.
  • Griesbeck, A. G.; Heinrich, T.; Oelgemoller, M.; Molis, A.; Heidtmann, A. Synthesis of Cyclic Peptides by Photochemical Decarboxylation of N-Phthaloyl Peptides in Aqueous Solution. HCA. 2002, 85, 4561.
  • Grad, H. Resonance Burning in Rocket Motors. Comm. Pure Appl. Math. 1949, 2, 79.
  • MacDonald, M.; Vander Velde, D.; Aubé, J. Synthesis and Conformation of Gly-Gly Dipeptides Constrained with Phenylalanine-like Aminocaproic Acid linkers. Org. Lett. 2000, 2, 1653.
  • Mascal, M.; Moody, C. J. Synthesis of (–)-Indolactam V. J. Chem. Soc. Chem. Commun. 1988, 0, 589.
  • Mascal, M.; Moody, C. J.; Slawin, A. M. Z.; Williams, D. J. Synthesis of (–)-Indolactam V. J. Chem. Soc. Perkin Trans. 1. 1992, 823.
  • Hegedus, L. S. Chromium Carbene Complex Photochemistry in Organic Synthesis. Tetrahedron. 1997, 53, 4105.
  • Hegedus, L. S. Synthesis of Amino Acids and Peptides Using Chromium Carbene Complex Photochemistry. Acc. Chem. Res. 1995, 28, 299.
  • Kiehl, O.; Schmalz, H.-G. In Organic Synthesis Highlights IV; Schmalz, H.G., Ed.; Wiley-VCH: Weinheim, 2000; pp. 71.
  • Barluenga, J.; Santamaria, J.; Tomas, M. Synthesis of Heterocycles via Group VI Fischer Carbene Complexes. Chem. Rev. 2004, 104, 2259.
  • Kaur, N. A New Approach to Anti-HIV Chemotherapy Devised by Linking the Vital Fragments of Active RT Inhibitors Such as Etravirine to the Molecular Framework of Anti-HIV Prone Privileged Nucleus of 1,4-benzodiazepine as Possible Substitute to ‘HAART’. Int. J. Pharm. Bio. Sci. 2013, 4, 309.
  • Kaur, N, Kishore, D. An Insight into Hexamethylenetetramine: A Versatile Reagent in Organic Synthesis. J. Iranian Chem. Soc. 2013, 10, 1193.
  • Brugel, T. A.; Hegedus, L. S. N-functionalization of Poly(Ethylene Glycol)-Linked Mono- and Bis-Dioxocyclams as Potential Ligands for Gd3++. J. Org. Chem. 2003, 68, 8409.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.