Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 22
486
Views
13
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Synthesis of 2,3-dihydroquinazolin-4(1H)-ones from anthranilamide and ketones over Hβ zeolite in aqueous media*

, , , , , , & show all
Pages 2866-2876 | Received 30 May 2018, Accepted 24 Jul 2018, Published online: 10 Nov 2018

References

  • Süzen, S. Antioxidant Activities of Synthetic Indole Derivatives and Possible Activity Mechanisms. In Khan, M.T.H., Eds.; Bioactive Heterocycles V; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp. 145–178.
  • Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Synthesis, and Applications; Wiley-VCH: Weinheim, 2003.
  • Joule, J. A.; Mills, K. Heterocyclic Chemistry; Blackwell Science: Oxford, 2013.
  • Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. DOI: 10.1021/jm501100b.
  • González, M.; Cerecetto, H.; Monge, A. Quinoxaline 1,4-Dioxide and Phenazine 5,10-Dioxide. Chemistry and Biology. In Khan, M.T.H., Eds.; Topics in Heterocyclic Chemistry; Springer: Berlin, Heidelberg, 2007; Vol. 11, pp. 179–211.
  • Yale, H. L.; Kalkstein, M. Substituted 2, 3-Dihydro-4(1H)-Quinazolinones. A New Class of Inhibitors of Cell Multiplication. J. Med. Chem. 1967, 10, 334–336. DOI: 10.1021/jm00315a010.
  • Peet, N. P.; Sunder, S.; Cregge, R. J. Preparation and Utility of 1-Acetyl-1-Methylhydrazine. J. Org. Chem. 1976, 41, 2733–2736. DOI: 10.1021/jo00878a018.
  • Ozaki, K. I.; Yamada, Y.; Oine, T.; Ishizuka, T.; Iwasawa, Y. Studies on 4(1H)-Quinazolinones. 5. Synthesis and Antiinflammatory Activity of 4(1H)-Quinazolinone Derivatives. J. Med. Chem. 1985, 28, 568–576. DOI: 10.1021/jm50001a006.
  • Jiang, J. B.; Hesson, D. P.; Dusak, B. A.; Dexter, D. L.; Kang, G. J.; Hamel, E. Synthesis and Biological Evaluation of 2-Styrylquinazolin-4(3H)-Ones, a New Class of Antimitotic Anticancer Agents Which Inhibit Tubulin Polymerization. J. Med. Chem. 1990, 33, 1721–1728. DOI: 10.1021/jm00168a029.
  • El-Naser Ossman, R.; El-Sayed Barakat, S. Synthesis and Anticonvulsant Activity of Some New 3-(p-Sulfamoylphenyl)-4(3H)-Quinazolinones. Arzneimittelforschung. 1994, 44, 915–919. DOI: 10.1021/jm00163a027.
  • Bridges, A. J.; Zhou, H.; Cody, D. R.; Rewcastle, G. W.; McMichael, A.; Showalter, H. D. H.; Fry, D. W.; Kraker, A. J.; Denny, W. A. Tyrosine Kinase Inhibitors. 8. An Unusually Steep Structure-Activity Relationship for Analogues of 4-(3-Bromoanilino)-6,7-Dimethoxyquinazoline (PD 153035), a Potent Inhibitor of the Epidermal Growth Factor Receptor. J. Med. Chem. 1996, 39, 267–276. DOI: 10.1021/jm9503613.
  • Osborne, D.; Stevenson, P. J. A Concise Formal Synthesis of Luotonin A. Tetrahedron Lett. 2002, 43, 5469–5470. DOI: 10.1016/S0040-4039(02)01049-3.
  • Shi, D. Q.; Rong, L.; Wang, J.; Zhuang, Q.; Wang, X.-S.; Hu, H. Synthesis of Quinazolin-4(3H)-Ones and 1,2-Dihydroquinazolin-4(3H)-Ones with the Aid of a Low-Valent Titanium Reagent. Tetrahedron Lett. 2003, 44, 3199–3201. DOI: 10.1016/S0040-4039(03)00449-0.
  • Masamune, T.; Takasugi, M.; Mori, Y. The C-9 Configuration of Jervine and Related Alkaloids. Tetrahedron Lett. 1965, 6, 489–495. DOI: 10.1016/S0040-4039(00)89985-2.
  • He, L.; Li, H.; Chen, J.; Wu, X.-F. Recent Advances in 4(3H)-Quinazolinone Syntheses. RSC Adv. 2014, 4, 12065–12077. DOI: 10.1039/C4RA00351A.
  • Chen, J.; Wu, D.; He, F.; Liu, M.; Wu, H.; Ding, J.; Su, W. Gallium(III) Triflate-Catalyzed One-Pot Selective Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Quinazolin-4(3H)-Ones. Tetrahedron Lett. 2008, 49, 3814–3818. DOI: 10.1016/j.tetlet.2008.03.127.
  • Chen, Y.; Shan, W.; Lei, M.; Hu, L. Thiamine Hydrochloride (VB1) as an Efficient Promoter for the One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones. Tetrahedron Lett. 2012, 53, 5923–5925. DOI: 10.1016/j.tetlet.2012.08.090.
  • Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Highly Efficient Solvent-Free Synthesis of Quinazolin-4(3H)-Ones and 2,3-Dihydroquinazolin-4(1H)-Ones Using Tetrabutylammonium Bromide as Novel Ionic Liquid Catalyst. Chin. Chem. Lett. 2010, 21, 550–553. DOI: 10.1016/j.cclet.2010.01.032.
  • Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Kozehgary, G.; Mohammadi, A. A. Efficient Synthesis of Mono- and Disubstituted 2,3-Dihydroquinazolin-4(1H)-Ones Using KAl(SO4)2·12H2O as a Reusable Catalyst in Water and Ethanol. Tetrahedron Lett. 2005, 46, 6123–6126. DOI: 10.1016/j.tetlet.2005.06.157.
  • Narasimhulu, M.; Lee, Y. R. Ethylenediamine Diacetate-Catalyzed Three-Component Reaction for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Their Spirooxindole Derivatives. Tetrahedron. 2011, 67, 9627–9634. DOI: 10.1016/j.tet.2011.08.018.
  • Ramesh, K.; Karnakar, K.; Satish, G.; Reddy, K. H. V.; Nageswar, Y. V. D. Tandem Supramolecular Synthesis of Substituted 2-Aryl-2,3- Dihydroquinazolin-4(1H)-Ones in the Presence of β-Cyclodextrin in Water. Tetrahedron Lett. 2012, 53, 6095–6099. DOI: 10.1016/j.tetlet.2012.08.141.
  • Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Nano-Indium Oxide: An Efficient Catalyst for One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones with a Greener Prospect. Catal. Commun. 2014, 49, 52–57. DOI: 10.1016/j.catcom.2014.01.032.
  • Zhang, J.; Ren, D.; Ma, Y.; Wang, W.; Wu, H. CuO Nanoparticles Catalyzed Simple and Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Quinazolin-4(3H)-Ones under Ultrasound Irradiation in Aqueous Ethanol. Tetrahedron. 2014, 70, 5274–5282. DOI: 10.1016/j.tet.2014.05.059.
  • Safari, J.; Gandomi-Ravandi, S. Efficient Synthesis of 2-Aryl-2,3-Dihydroquinazolin-4(1H)-Ones in the Presence of Nanocomposites under Microwave Irradiation. J. Mol. Catal. A Chem. 2014, 390, 1–6. DOI: 10.1016/j.molcata.2014.02.013.
  • Abdollahi-Alibeik, M.; Shabani, E. Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Catalyzed by Zirconium (IV) Chloride as a Mild and Efficient Catalyst. Chinese Chem. Lett. 2011, 22, 1163–1166. DOI: 10.1016/j.cclet.2011.05.011.
  • Murthy, P. V. N. S.; Rambabu, D.; Krishna, G. R.; Reddy, C. M.; Prasad, K. R. S.; Rao, M. V. B.; Pal, M. Amberlyst-15 Mediated Synthesis of 2-Substituted 2,3-Dihydroquinazolin- 4(1H)-Ones and Their Crystal Structure Analysis. Tetrahedron Lett. 2012, 53, 863–867. DOI: 10.1016/j.tetlet.2011.12.023.
  • Desroses, M.; Scobie, M.; Helleday, T. A New Concise Synthesis of 2,3-Dihydroquinazolin-4(1H)-One Derivatives. New J. Chem. 2013, 37, 3595. DOI: 10.1039/c3nj00618b.
  • Labade, V. B.; Shinde, P. V.; Shingare, M. S. A Facile and Rapid Access towards the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones. Tetrahedron Lett. 2013, 54, 5778–5780. DOI: 10.1016/j.tetlet.2013.08.037.
  • Ghorbani-Choghamarani, A.; Norouzi, M. Synthesis of Copper (II)-Supported Magnetic Nanoparticle and Study of Its Catalytic Activity for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones. J. Mol. Catal. A Chem. 2014, 395, 172–179. DOI: 10.1016/j.molcata.2014.08.013.
  • Wu, J.; Du, X.; Ma, J.; Zhang, Y.; Shi, Q.; Luo, L.; Song, B.; Yang, S.; Hu, D. Preparation of 2,3-Dihydroquinazolin-4(1H)-One Derivatives in Aqueous Media with β-Cyclodextrin-SO3H as a Recyclable Catalyst. Green Chem. 2014, 16, 3210–3217. DOI: 10.1039/c3gc42400f.
  • Zhaleh, S.; Hazeri, N.; Maghsoodlou, M. T. Green Protocol for Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones: Lactic Acid as Catalyst under Solvent-Free Condition. Res. Chem. Intermed. 2016, 42, 6381–6390. DOI: 10.1007/s11164-016-2469-z.
  • Chen, B. H.; Li, J. T.; Chen, G. F. Efficient Synthesis of 2,3-Disubstituted-2,3-Dihydroquinazolin-4(1H)-Ones Catalyzed by Dodecylbenzenesulfonic Acid in Aqueous Media under Ultrasound Irradiation. Ultrason. Sonochem 2015, 23, 59–65. DOI: 10.1016/j.ultsonch.2014.08.024.
  • Sheldon, R. A. Catalytic Oxidations in the Manufacture of Fine Chemicals. Stud. Surf. Sci. Catal. 1990, 55, 1–32. DOI: 10.1016/S0167-2991(08)60130-5.
  • Sheldon, R. Chemistry of Waste Minimisation; Blackie Academic & Professional: London, 1996; Vol. 4.
  • Hölderich, W. F.; Heitmann, G. Synthesis of Intermediate and Fine Chemicals on Heterogeneous Catalysts with respect to Environmental Protection. Catal. Today. 1997, 38, 227–233. DOI: 10.1016/S0920-5861(97)00071-0.
  • Anastas, P. T.; Bartlett, L. B.; Kirchhoff, M. M.; Williamson, T. C. The Role of Catalysis in the Design, Development, and Implementation of Green Chemistry. Catal. Today. 2000, 55, 11–22. DOI: 10.1016/S0920-5861(99)00222-9.
  • Stewart, A. An Introduction to Zeolite Molecular Sieves by Alan Dyer.Surf. Interface Anal. 1989, 14, 213–213. DOI: 10.1002/sia.740140410.
  • Breck, D. W. Zeolite Molecular Sieves: Structure, Chemistry, and Use. J. Chromatogr. Sci. 1975, 13, 18A–18A. DOI: 10.1093/chromsci/13.4.18A-c.
  • Cundy, C. S.; Cox, P. A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103, 663–701. DOI: 10.1021/cr020060i.
  • Farneth, W. E.; Gorte, R. J. Methods for Characterizing Zeolite Acidity. Chem. Rev. 1995, 95, 615–635. DOI: 10.1021/cr00035a007.
  • Smith, K.; Musson, A.; DeBoos, G. A. A Novel Method for the Nitration of Simple Aromatic Compounds. J. Org. Chem. 1998, 63, 8448–8454. DOI: 10.1021/jo981557o.
  • Bellussi, G.; Pazzuconi, G.; Perego, C.; Girotti, G.; Terzoni, G. Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed by β Zeolites. J. Catal. 1995, 157, 227–234. DOI: 10.1006/jcat.1995.1283.
  • Camiloti, A. M.; Jahn, S. L.; Velasco, N. D.; Moura, L. F.; Cardoso, D. Acidity of Beta Zeolite Determined by TPD of Ammonia and Ethylbenzene Disproportionation. Appl. Catal. A Gen. 1999, 182, 107–113. DOI: 10.1016/S0926-860X(98)00418-9.
  • Mintova, S.; Valtchev, V.; Onfroy, T.; Marichal, C.; Knözinger, H.; Bein, T. Variation of the Si/Al Ratio in Nanosized Zeolite Beta Crystals. Microporous Mesoporous Mater. 2006, 90, 237–245. DOI: 10.1016/j.micromeso.2005.11.026.
  • De Jong, K. P.; Mesters, C. M. A. M.; Peferoen, D. G. R.; Van Brugge, P. T. M.; De Groot, C. Paraffin Alkylation Using Zeolite Catalysts in a Slurry Reactor: Chemical Engineering Principles to Extend Catalyst Lifetime. Chem. Eng. Sci. 1996, 51, 2053–2060. DOI: 10.1016/0009-2509(96)00062-0.
  • Narender, N.; Reddy, K. S. K.; Kumar, M. A.; Rohitha, C. N.; Kulkarni, S. J. Tetrahydropyranylation of Alcohols over Modified Zeolites. Catal. Lett. 2010, 134, 175–178. DOI: 10.1007/s10562-009-0205-7.
  • Mohan, K. V. V. K.; Narender, N.; Kulkarni, S. J. Liquid Phase Synthesis of Annelated Pyridines over Molecular Sieve Catalyst. Microporous Mesoporous Mater. 2007, 106, 229–235. DOI: 10.1016/j.micromeso.2007.03.001.
  • Mohan, K. V. V. K.; Narender, N.; Kulkarni, S. J. Zeolite Catalyzed Acylation of Alcohols and Amines with Acetic Acid under Microwave Irradiation. Green Chem. 2006, 8, 368. DOI: 10.1039/b600031b.
  • Narender, N.; Mohan, K. V. V. K.; Reddy, R. V.; Srinivasu, P.; Kulkarni, S. J.; Raghavan, K. V. Liquid Phase Bromination of Phenols Using Potassium Bromide and Hydrogen Peroxide over Zeolites. J. Mol. Catal. A Chem. 2003, 192, 73–77. DOI: 10.1016/S1381-1169(02)00131-0.
  • Narender, N.; Srinivasu, P.; Kulkarni, S. J.; Raghavan, K. V. Intermolecular Cyclization of Diethanolamine and Methylamine to N,N′-Dimethylpiperazine over Zeolites under High Pressure. J. Catal. 2001, 202, 430–433. DOI: 10.1006/jcat.2001.3291.
  • Narender, N.; Srinivasu, P.; Kulkarni, S. J.; Raghavan, K. V. Liquid Phase Acylation of Amines with Acetic Acid over HY Zeolite. Green Chem. 2000, 2, 104–105. DOI: 10.1039/b000227p.
  • Reddy, M. M.; Kumar, M. A.; Swamy, P.; Naresh, M.; Srujana, K.; Satyanarayana, L.; Venugopal, A.; Narender, N. N-Alkylation of Amines with Alcohols over Nanosized Zeolite Beta. Green Chem. 2013, 15, 3474. DOI: doi:10.1039/c3gc41345d.
  • Naresh, M.; Swamy, P.; Reddy, M. M.; Srujana, K.; Durgaiah, C.; Naresh, G.; Narender, N. Solvent-Free Hydration of Alkynes over Hβ Zeolite. Appl. Catal. A Gen. 2015, 505, 213–216. DOI: 10.1016/j.apcata.2015.07.038.
  • Corma, A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chem. Rev. 1995, 95, 559–614. DOI: 10.1021/cr00035a006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.