Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 19
85
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of substituted ureas possessing alkyl aromatic fragments via the reaction of 1-(3,3-diethoxypropyl)ureas with phenols

, , &
Pages 2545-2552 | Received 08 Jun 2018, Published online: 16 Oct 2018

References

  • Vishnyakova, T. P.; Golubeva, I. A.; Glebova, E. V. Substituted Ureas. Methods of Synthesis and Applications. Russ. Chem. Rev. 1985, 54, 249–261. DOI:10.1070/RC1985v054n03ABEH003022
  • Temal, T.; Jary, H.; Auberval, M.; Lively, S.; Guédin, D.; Vevert, J.; Deprez, P. New Potent Calcimimetics: I. Discovery of a Series of Novel Trisubstituted Ureas. Bioorg. Med. Chem. Lett 2013, 23, 2451–2454. DOI:10.1016/j.bmcl.2013.01.078
  • Deprez, P.; Temal, T.; Jary, H.; Auberval, M.; Lively, S.; Guédin, D.; Vevert, J.-P. New Potent Calcimimetics: II. Discovery of Benzothiazole Trisubstituted Ureas. Bioorg. Med. Chem. Lett 2013, 23, 2455–2459. DOI:10.1016/j.bmcl.2013.01.077
  • Wehn, P. M.; Harrington, P. E.; Carlson, T. J.; Davis, J.; Deprez, P.; Fotsch, C. H.; Grillo, M. P.; Lu, J. Y.; Morony, S.; Pattabiraman, K.; et al. Metabolism-Guided Discovery of a Potent and Orally Bioavailable Urea-Based Calcimimetic for the Treatment of Secondary Hyperparathyroidism. Bioorg. Med. Chem. Lett. 2013, 23, 6625–6628. DOI:10.1016/j.bmcl.2013.10.050
  • Mane, U. R.; Mohanakrishnan, D.; Sahal, D.; Murumkar, P. R.; Giridhar, R.; Ram, M. Synthesis and Biological Evaluation of Some Novel Pyrido[1,2-a]Pyrimidin-4-Ones as Antimalarial Agents. Eur. J. Med. Chem. 2014, 79, 422–435. DOI:10.1016/j.ejmech.2014.04.031
  • DeVries, V. G.; Bloom, J. D.; Dutia, M. D.; Katocs, A. S.; Largis, E. E. Potential Antiatherosclerotic Agents. 6. Hypocholesterolemic Trisubstituted Urea Analogues. J. Med. Chem. 1989, 32, 2318–2325. DOI:10.1021/jm00130a016
  • Nowotarski, S. L.; Pachaiyappan, B.; Holshouser, S. L.; Kutz, C. J.; Li, Y.; Huang, Y.; Sharma, S. K.; Casero, R. A.; Woster, P. M. Structure–Activity Study for (Bis)Ureidopropyl- and (Bis)Thioureidopropyldiamine LSD1 Inhibitors with 3-5-3 and 3-6-3 Carbon Backbone Architectures. Bioorg. Med. Chem 2015, 23, 1601–1612. DOI:10.1016/j.bmc.2015.01.049
  • Esteves-Souza, A.; Pissinate, K.; Graça Nascimento, M. D.; Grynberg, N. F.; Echevarria, A. Synthesis, Cytotoxicity, and DNA-Topoisomerase Inhibitory Activity of New Asymmetric Ureas and Thioureas. Bioorg. Med. Chem. 2006, 14, 492–499. DOI:10.1016/j.bmc.2005.08.031
  • Kowalski, J. A.; Swinamer, A. D.; Muegge, I.; Eldrup, A. B.; Kukulka, A.; Cywin, C. L.; De Lombaert, S. Rapid Synthesis of an Array of Trisubstituted Urea-Based Soluble Epoxide Hydrolase Inhibitors Facilitated by a Novel Solid-Phase Method. Bioorg. Med. Chem. Lett. 2010, 20, 3703–3707. DOI:10.1016/j.bmcl.2010.04.078
  • Kroupa, J.; Stibor, I.; Pojarová, M.; Tkadlecová, M.; Lhoták, P. Anion Receptors Based on Ureido-Substituted Thiacalix[4]Arenes and Calix[4]Arenes. Tetrahedron 2008, 64, 10075–10079. DOI:10.1016/j.tet.2008.08.030
  • Lang, K.; Cuřínová, P.; Dudič, M.; Prošková, P.; Stibor, I.; Št’astný, V.; Lhoták, P. Unusual Stoichiometry of Urea-Derivatized Calix[4]Arenes Induced by Anion Complexation. Tetrahedron Lett. 2005, 46, 4469–4472. DOI:10.1016/j.tetlet.2005.04.102
  • Stastny, V.; Lhoták, P.; Michlová, V.; Stibor, I.; Sykora, J. Novel Biscalix[4]Arene-Based Anion Receptors. Tetrahedron. 2002, 58, 7207–7211. DOI:10.1016/S0040-4020(02)00799-8
  • Dudic, M.; Lhoták, P.; Stibor, I.; Lang, K.; Prosková, P. Calix[4]Arene-Porphyrin Conjugates as Versatile Molecular Receptors for Anions. Org. Lett. 2003, 5, 149–152. DOI:10.1021/ol027175t
  • Budka, J.; Lhoták, P.; Michlová, V.; Stibor, I. Urea Derivatives of Calix[4]Arene 1,3-Alternate: An Anion Receptor with Profound Negative Allosteric Effect. Tetrahedron Lett. 2001, 42, 1583–1586. DOI:10.1016/S0040-4039(00)02309-1
  • Nefzi, A.; Ong, N. A.; Houghten, R. A. An Efficient Two-Step Synthesis of Mono-, Di- and Triureas from Resin-Bound Amides. Tetrahedron Lett. 2000, 41, 5441–5446. DOI:10.1016/S0040-4039(00)00845-5
  • Manickam, M.; Pillaiyar, T.; Boggu, P.; Venkateswararao, E.; Jalani, H. B.; Kim, N.-D.; Lee, S. K.; Jeon, J. S.; Kim, S. K.; Jung, S.-H. Discovery of Enantioselectivity of Urea Inhibitors of Soluble Epoxide Hydrolase. Eur. J. Med. Chem. 2016, 117, 113–124. DOI:10.1016/j.ejmech.2016.04.015
  • Manickam, M.; Jalani, H. B.; Pillaiyar, T.; Sharma, N.; Boggu, P. R.; Venkateswararao, E.; Lee, Y.-J.; Jeon, E.-S.; Jung, S.-H. Exploration of Flexible Phenylpropylurea Scaffold as Novel Cardiac Myosin Activators for the Treatment of Systolic Heart Failure. Eur. J. Med. Chem. 2017, 134, 379–391. DOI:10.1016/j.ejmech.2017.04.005
  • Mohy El Dine, T.; Chapron, S.; Duclos, M.-C.; Duguet, N.; Popowycz, F.; Lemaire, M. One-Pot, Solvent-Free Access to Unsymmetrical Ureas by Palladium-Catalysed Reductive Alkylation Using Molecular Hydrogen. Eur. J. Org. Chem. 2013, 2013, 5445–5454. DOI:10.1002/ejoc.201300642
  • Yamauchi, D.; Nishimura, T.; Yorimitsu, H. Hydroxoiridium-Catalyzed Hydroalkylation of Terminal Alkenes with Ureas by C(sp3 )-H Bond Activation. Angew. Chem. Int. Ed. Engl. 2017, 56, 7200–7204. DOI:10.1002/anie.201702169
  • Li, F.; Sun, C.; Shan, H.; Zou, X.; Xie, J. From Regioselective Condensation to Regioselective N-Alkylation: A Novel and Environmentally Benign Strategy for the Synthesis of N, N ′-Alkyl Aryl Ureas and N, N ′-Dialkyl Ureas. ChemCatChem 2013, 5, 1543–1552. DOI:10.1002/cctc.201200648
  • Ghosh, S. C.; Li, C. C.; Zeng, H. C.; Ngiam, J. S. Y.; Seayad, A. M.; Chen, A. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines. Adv. Synth. Catal. 2014, 356, 475–484. DOI:10.1002/adsc.201300717
  • Bigi, F.; Maggi, R.; Sartori, G. Selected Syntheses of Ureas through Phosgene Substitutes. Green Chem. 2000, 2, 140–148. DOI:10.1039/b002127j
  • Gazizov, АS.; Smolobochkin, АV.; Voronina, Y. К.; Burilov, АR.; Pudovik, M. A. Arkivoc 2014, IV, 319–327. DOI:10.3998/ark.5550190.p008.288
  • Gazizov, A. S.; Smolobochkin, A. V.; Voronina, J. K.; Burilov, A. R.; Pudovik, M. A. Acid-Catalyzed Reaction of (4,4-Diethoxybutyl)Ureas with Phenols as a Novel Approach to the Synthesis of α -Arylpyrrolidines. Synth. Commun 2015, 45, 1215–1221. DOI:10.1080/00397911.2015.1011340
  • Gazizov, A. S.; Kharitonova, N. I.; Smolobochkin, A. V.; Syakaev, V. V.; Burilov, A. R.; Pudovik, M. A. Facile Synthesis of 2-(2-Arylpyrrolidin-1-Yl)Pyrimidines via Acid-Catalyzed Reaction of N-(4,4-Diethoxybutyl)Pyrimidin-2-Amine with Phenols. Monatsh. Chem. 2015, 146, 1845. DOI:10.1007/s00706-015-1545-1
  • Smolobochkin, A. V.; Gazizov, A. S.; Burilov, A. R.; Pudovik, M. A. Synthesis of Functionalized Diarylbutane Derivatives by the Reaction of 2-Methylresorcinol with γ-Ureidoacetals. Russ. J. Gen. Chem. 2015, 85, 1779–1782. DOI:10.1134/S1070363215070361
  • Parulekar, S.; Muppalla, К.; Husain, А.; Bisht, K. S. Multifold Ring Closing Metathesis Reactions in the Formation of Resorcin[4]Arene Cavitands. RSC Adv. 2015, 5, 25477–25484. DOI:10.1039/C5RA00760G
  • Gazizov, A. S.; Smolobochkin, A. V.; Anikina, E. A.; Strelnik, A. G.; Burilov, A. R.; Pudovik, M. A. Acid-Mediated C–N Bond Cleavage in 1-Sulfonylpyrrolidines: An Efficient Route towards Dibenzoxanthenes, Diarylmethanes, and Resorcinarenes. Synlett. 2018, 29, 467–472. DOI:10.1055/s-0036-1590954
  • Karimi-Jaberi, Z.; Hashemi, M. M. One Step Synthesis of 14-Alkyl- or Aryl-14H-Dibenzo[a,j]Xanthenes Using Sodium Hydrogen Sulfate as Catalyst. Monatsh. Chem. 2008, 139, 605–608. DOI:10.1007/s00706-007-0786-z
  • Weinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 1991, 56, 5527–5535. DOI:10.1021/jo00019a011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.