Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 19
210
Views
5
CrossRef citations to date
0
Altmetric
Articles

Poly (methyl methacrylate)-graphene oxide supported palladium catalyst: A ligand free protocol for Suzuki and Heck coupling reaction in water medium

&
Pages 2584-2599 | Received 09 May 2018, Published online: 10 Oct 2018

References

  • (a) Suzuki, A. The Suzuki Reaction with Arylboron Compounds in Arene Chemistry. In Modern Arene Chemistry, 1st ed.; Wiley-VCH: Weinheim, 2004.; pp 53–106; b) Heck, R. F. Palladium-Catalyzed Reactions of Organic Halides with Olefins. Acc. Chem. Res. 1979, 12, 146. DOI: 10.1002/chin.197937153. c) Yahiaoui, S.; Fardost, A.; Trejos, A.; Larhed, M. Chelation-Mediated Palladium(II)-Catalyzed Domino Heck−Mizoroki/Suzuki−Miyaura Reactions Using Arylboronic Acids: Increasing Scope and Mechanistic Understanding. J. Org. Chem. 2011, 76, 2433–2438.
  • Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J. M.; Polshettiwar, V. Nanocatalysts for Suzuki Cross-Coupling Reactions. Chem. Soc. Rev. 2011, 40, 5181–5203. DOI: 10.1039/c1cs15079k.
  • Zhou, Z. Z.; Liu, F. S.; Shen, D. S.; Tan, C.; Luo, L. Y. Efficient Palladium-Catalyzed Suzuki Cross-Coupling Reaction with β-Ketoamine Ligands. Inorg. Chem. Commun. 2011, 14, 659–662. DOI: 10.1016/j.inoche.2011.01.044.
  • Hajduk, P. J.; Bures, M.; Praestgaard, J.; Fesik, S. W. Privileged Molecules for Protein Binding Identified from NMR-Based Screening. J. Med. Chem. 2000, 43, 3443–3447. DOI: 10.1021/jm000164q.
  • Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev. 2002, 102, 1359–1470. DOI: 10.1021/cr000664r.
  • Böhm, V. P. W.; Herrmann, W. A. Nonaqueous Ionic Liquids: superior Reaction Media for the Catalytic Heck-Vinylation of Chloroarenes. Chemistry 2000, 6, 1017–1025. DOI: 10.1002/(SICI)1521-3765(20000317)6:6<1017::AID-CHEM1017>3.0.CO;2-8.
  • Park, J. H.; Raza, F.; Jeon, S. J.; Kim, H. I.; Kang, T. W.; Yim, D.; Kim, J. H. Recyclable N-Heterocyclic Carbene/Palladium Catalyst on Graphene Oxide for the Aqueous-Phase Suzuki Reaction. Tetrahed. Lett. 2014, 55, 3426–3430. DOI: 10.1016/j.tetlet.2014.04.078.
  • Paul, S.; Islam, M. M.; Islam, S. M. Suzuki–Miyaura Reaction by Heterogeneously Supported Pd in Water: Recent Studies. RSC Adv. 2015, 5, 42193–42221. DOI: 10.1039/C4RA17308B.
  • Yin, L.; Liebscher, J. Carbon-Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev. 2007, 107, 133–173. DOI: 10.1021/cr0505674.
  • Sun, Q.; Zhu, L. F.; Sun, Z. H.; Meng, X. J.; Xiao, F. S. Porous Polymer Supported Palladium Catalyst for Cross Coupling Reactions with High Activity and Recyclability. Sci. China Chem. 2012, 55, 2095–2103. DOI: 10.1007/s11426-011-4491-8.
  • Pan, C.; Liu, M.; Zhao, L.; Wu, H.; Ding, J.; Cheng, J. Palladium Chloride Catalyzed Hiyama Cross-Coupling Reaction Using Phenyltrimethoxysilane. Catcom. 2008, 9, 1685–1687.
  • Bedford, R. B.; Singh, U. G.; Walton, R. I.; Williams, R. T.; Davis, S. A. Nanoparticulate Palladium Supported by Covalently Modified Silicas: Synthesis, Characterization, and Application as Catalysts for the Suzuki Coupling of Aryl Halides. Chem. Mater. 2005, 17, 701–707. DOI: 10.1021/cm048860s.
  • Jin, M. J.; Taher, A.; Kang, H. J.; Choi, M.; Ryoo, R. Palladium Acetate Immobilized in a Hierarchical MFI Zeolite-Supported Ionic Liquid: A Highly Active and Recyclable Catalyst for Suzuki Reaction in Water. Green Chem. 2009, 11, 309–313. DOI: 10.1039/b817855k.
  • Jin, X.; Li, J.; Li, H. An Efficient Poly(Amic Acid) Salt-Stabilised Palladium Nanocatalyst with Excellent Recyclable Performance for Suzuki–Miyaura Coupling Reactions under Mild Conditions. J. Exper. Nanosci. 2018, 13, 95–106. DOI: 10.1080/17458080.2017.1413600.
  • Ramchandani, R. K.; Uphade, B. S.; Vinod, M. P.; Wakharkar, R. D.; Choudhary, V. R.; Sudalai, A. Pd–Cu–Exchanged Montmorillonite K10 Clay: an Efficient and Reusable Heterogeneous Catalyst for Vinylation of Aryl Halides. Chem. Commun. 1997, 21, 2071–2072. DOI: 10.1039/a705870e.
  • Wan, Y.; Wang, H.; Zhao, Q.; Klingstedt, M.; Terasaki, O.; Zhao, D. Ordered Mesoporous Pd/Silica-Carbon as a Highly Active Heterogeneous Catalyst for Coupling Reaction of Chlorobenzene in Aqueous Media. J. Am. Chem. Soc. 2009, 131, 4541–4550. DOI: 10.1021/ja808481g.
  • Nong, Y. L.; Qiao, N.; Deng, T. H.; Pan, Z.; Liang, Y. Solid Sheet of Anodic Aluminium Oxide Supported Palladium Catalyst for Suzuki Coupling Reactions. Catalys. Commun. 2017, 100, 139–143. DOI: 10.1016/j.catcom.2017.06.032.
  • Wali, A.; Pillai, S. M.; Kaushik, V. K.; Satish, S. Arylation of Acrylonitrile with Iodobenzene over Pd/MgO Catalyst. Appl. Catal. A. 1996, 135, 83. DOI: 10.1016/0926-860X(95)00190-5.
  • Kundhikanjana, W. K.; Lai, J.; Wang, H. L.; Dai, H. J.; Kelly, M. A.; Shen, Z. X. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging. Nano Lett. 2009, 9, 3762–3765. DOI: 10.1021/nl901949z.
  • Wang, J.; Hu, H.; Wang, X.; Xu, C.; Zhang, M.; Shang, X. Preparation and Mechanical and Electrical Properties of Graphene Nanosheets-Poly(Methyl Methacrylate) Nanocomposites via in Situ Suspension Polymerization. J. Appl. Polym. Sci. 2011, 122, 1866–1871. DOI: 10.1002/app.34284.
  • Kuila, T.; Bose, S.; Khanra, P.; Kim, N. H.; Rhee, K. Y.; Lee, J. H. Characterization and Properties of in Situ Emulsion Polymerized Poly(Methyl Methacrylate)/Graphene Nanocomposites. Compos A. APPL Sci Manuf. 2011, 42, 1856–1861. DOI: 10.1016/j.compositesa.2011.08.014.
  • Yang, J.; Yan, X.; Wu, M.; Chen, F.; Fei, Z.; Zhong, M. Self-Assembly between Graphene Sheets and Cationic Poly(Methyl Methacrylate) (PMMA) Particles: preparation and Characterization of PMMA/Graphene Composites. J. Nanopart. Res. 2012, 14, 717–724. DOI: 10.1007/s11051-011-0717-0.
  • Hass, J.; Heer, W. A.; Conrad, E. H. The Growth and Morphology of Epitaxial Multilayer Graphene. J. Phys: Condens. Matter. 2008, 20, 323202. DOI: 10.1088/0953-8984/20/32/323202.
  • Shendage, S. S.; Singh, A. S.; Nagarkar, J. M. Facile Approach to the Electrochemical Synthesis of Palladium-Reduced Graphene Oxide and Its Application for Suzuki Coupling Reaction. Tetrahedron Lett. 2014, 55, 857–860. DOI: 10.1016/j.tetlet.2013.12.022.
  • Omez-Mart, G.; Inez, M.; Buxaderas, E.; Pastor, M. I.; Alonso, D. A. Palladium Nanoparticles Supported on Graphene and Reduced Graphene Oxide as Efficient Recyclable Catalyst for the Suzuki–Miyaura Reaction of Potassium Aryltrifluoroborates. J. Mol. Catal. A: Chem. 2015, 404–405, 1–7. DOI: 10.1016/j.molcata.2015.03.022.
  • Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction. J. Am. Chem. Soc. 2009, 131, 8262–8270. DOI: 10.1021/ja901105a.
  • Yamamoto, S-i.; Kinoshitab, H.; Hashimoto, H.; Nishina, Y. Nanoscale 2012, 0, 1–3.
  • Shang, N.; Feng, C.; Zhang, H.; Gao, S.; Tang, R.; Wang, C.; Wang, Z. Suzuki–Miyaura Reaction Catalyzed by Graphene Oxide Supported Palladium Nanoparticles. Catal. Commun. 2013, 40, 111–115. DOI: 10.1016/j.catcom.2013.06.006.
  • Shendage, S.; Patil, B. U.; Nagarkar, J. M. Electrochemical Synthesis and Characterization of Palladium Nanoparticles on Nafion–Graphene Support and Its Application for Suzuki Coupling Reaction. Tetrahedron Lett. 2013, 54, 3457–3461. DOI: 10.1016/j.tetlet.2013.04.092.
  • Jang, J. Y.; Jeong, H. M.; Kim, B. K. Compatibilizing Effect of Graphite Oxide in Graphene/PMMA Nanocomposites. Macromol. Res. 2009, 17, 626–635. DOI: 10.1007/BF03218920.
  • Chen, C. H.; Yen, W. H.; Kuan, C. F.; Chiang, C. L. Polym. Compos. 2010, 31, 18–24.
  • Potts, J. R.; Lee, S. H.; Alam, T. M.; An, J.; Stoller, M. D.; Piner, R. D.; Ruoff, R. S. Thermomechanical Properties of Chemically Modified Graphene/Poly(Methyl Methacrylate) Composites Made by in Situ Polymerization. Carbon 2011, 49, 2615–2623. DOI: 10.1016/j.carbon.2011.02.023.
  • Zeng, X.; Yang, J.; Yuan, W. Preparation of a Poly(Methyl Methacrylate)-Reduced Graphene Oxide Composite with Enhanced Properties by a Solution Blending Method. European Polm. J. 2012, 48, 1674–1682. DOI: 10.1016/j.eurpolymj.2012.07.011.
  • Pham, V. H.; Dang, T. T.; Hur, S. H.; Kim, E. J.; Chung, J. S. Highly Conductive Poly(Methyl Methacrylate) (PMMA)-Reduced Graphene Oxide Composite Prepared by Self-Assembly of PMMA Latex and Graphene Oxide through Electrostatic Interaction. Acs. Mater. Interfaces Appl. Mater. Interfaces 2012, 4, 2630–2636. −  DOI: 10.1021/am300297j.
  • Thomassin, J.-M.; Trifkovic, M.; Alkarmo, W.; Detrembleur, C.; Jérôme, C.; Macosko, C. Poly(Methyl Methacrylate)/Graphene Oxide Nanocomposites by a Precipitation Polymerization Process and Their Dielectric and Rheological Characterization. Macromol. 2014, 47, 2149–2155. DOI: 10.1021/ma500164s.
  • Trimm, D. L. Thermal stability of catalyst support In Catalyst Deactivation; , Ed.; Elsevier Science Publishers, 1991.; pp 29–51.
  • Gupta, R. K.; Alahmed, Z. A.; Yakuphanoglu, F. Graphene Oxide Based Low Cost Battery. Mater. Lett. 2013, 112, 75–77. DOI: 10.1016/j.matlet.2013.09.011.
  • Chekin, F. Sol–Gel Synthesis of Palladium Nanoparticles Supported on Reduced Graphene Oxide: An Active Electrocatalyst for Hydrogen Evolution Reaction. Bull. Mater. Sci. 2015, 38, 887–893. DOI: 10.1007/s12034-015-0954-4.
  • Xu, J.; Gai, S.; He, F.; Niu, N.; Gao, P.; Chen, Y.; Yang, P. Reduced Graphene Oxide/Ni(1-x)Co(x)Al-Layered Double Hydroxide Composites: Preparation and High Supercapacitor Performance. Dalton Trans. 2014, 43, 11667–11675. DOI: 10.1039/C4DT00686K.
  • Anton, D. R.; Crabtree, R. H. Dibenzo[a,e]Cyclooctatetraene in a Proposed Test for Heterogeneity in Catalysts Formed from Soluble Platinum-Group Metal Complexes. Organometallics 1983, 2, 855–859. DOI: 10.1021/om50001a013.
  • Mahanta, A.; Mondal, M.; Thakur, A. J.; Bora, U. An Improved Suzuki–Miyaura Cross-Coupling Reaction with the Aid of in Situ Generated PdNPs: Evidence for Enhancing Effect with Biphasic System. Tetrahedron Lett. 2016, 57, 3091–3095. DOI: 10.1016/j.tetlet.2016.05.098.
  • Sanjaykumar, S. R.; Mukri, B. D.; Patil, S.; Madras, G.; Hegde, M. S. Ce0·98Pd0·02O2-δ: Recyclable, Ligand Free Palladium(II) Catalyst for Heck Reaction. J. Chem. Sci. 2011, 123, 47–54. DOI: 10.1007/s12039-011-0103-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.