Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 22
226
Views
14
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Microwave-assisted synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of a new series of isatin-β-thiocarbohydrazones

, , , , &
Pages 2899-2911 | Received 02 Jun 2018, Published online: 21 Nov 2018

References

  • Lee, C. Therapeutic Challenges in the Era of Antibiotic Resistance. Int. J. Antimicrob. Agent (Suppl. 4) 2008, 32, S197–S199. DOI: 10.1016/S0924-8579(09)70002-0.
  • Valaperta, R.; Tejada, M. R.; Frigerio, M.; Moroni, A.; Ciulla, E.; Cioffi, S.; Capelli, P.; Costa, E. Staphylococcus aureus Nosocomial Infections: The Role of a Rapid and Low-Cost Characterization for the Establishment of a Surveillance System. New Microbiol. 2010, 33, 223–232.
  • Adwan, K.; Abu-Hasan, N.; Adwan, G.; Jarrar, N.; Abu-Shanab, B.; Abu-Zant, A. Nosocomial Infection Caused by Methicillin-Resistant Staphylococcus aureus in Palestine. Microb. Drug Resist. 2005, 11, 75–77. DOI: 10.1089/mdr.2005.11.75.
  • Zhang, W.; Berberov, E. M.; Freeling, J.; He, D.; Moxley, R. A.; Francis, D. H. Significance of Heat-Stable and Heat-Labile Enterotoxins in Porcine Colibacillosis in an Additive Model for Pathogenicity Studies. Infect. Immun. 2006, 74, 3107–3114. DOI: 10.1128/IAI.01338-05.
  • Yoder, J. S.; Cesario, S.; Plotkin, V.; Ma, X.; Kelly-Shannon, K.; Dworkin, M. S. Outbreak of Enterotoxigenic Escherichia coli Infection with an Unusually Long Duration of Illness. Clin. Infect. Dis. 2006, 42, 1513–1517. DOI: 10.1086/503842.
  • Dukowicz, A. C.; Lacy, B. E.; Levine, G. M. Small Intestinal Bacterial Overgrowth: A Comprehensive Review. Gastroenterol. Hepatol. (N Y) 2007, 3, 112–122.
  • Heijer, C. D.; Beerepoot, M. A.; Prins, J. M.; Geerlings, S. E.; Stobberingh, E. E. Determinants of Antimicrobial Resistance in Escherichia coli Strains Isolated from Faeces and Urine of Women with Recurrent Urinary Tract Infections. PloS One 2012, 7, e49909. DOI: 10.1371/journal.pone.0049909.
  • Lee, H. H.; Molla, M. N.; Cantor, C. R.; Collins, J. J. Bacterial Charity Work Leads to Population-Wide Resistance. Nature 2010, 467, 82–85. DOI: 10.1038/nature09354.
  • Walsh, C. Antibiotics: Actions, Origins, Resistance; Asm Press: Washington, DC, USA, 2003.
  • Werner, G.; Strommenger, B.; Witte, W. Acquired Vancomycin Resistance in Clinically Relevant Pathogens. Future Microbiol. 2008, 3, 547–562. DOI: 10.2217/17460913.3.5.547.
  • Cegelski, L.; Marshall, G. R.; Eldridge, G. R.; Hultgren, S. J. The Biology and Future Prospects of Antivirulence Therapies. Nat. Rev. Microbiol. 2008, 6, 17–27. DOI: 10.1038/nrmicro1818.
  • Tay, S. B.; Yew, W. S. Development of Quorum-Based anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens. Int. J. Mol. Sci. 2013, 14, 16570–16599. DOI: 10.3390/ijms140816570.
  • Latge, J.-P. Aspergillus fumigatus and Aspergillosis. Clin. Microbiol. Rev. 1999, 12, 310–350.
  • Dagenais, T. R. T.; Keller, N. P. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin. Microbiol. Rev. 2009, 22, 447–465. DOI: 10.1128/CMR.00055-08.
  • Ugale, V.; Patel, H.; Patel, B.; Bari, S. Benzofurano-Isatins: Search for Antimicrobial Agents. Arab. J. Chem. 2017, 10, S389–S396. DOI: 10.1016/j.arabjc.2012.09.011.
  • Bari, S.; Manda, S.; Ugale, V.; Jupally, V. R.; Akena, V. Rational Design and Synthesis of Benzothiazolo-Isatins for Antimicrobial and Cytotoxic Activities. Indian J. Chem. 2015, 54B, 418–429.
  • Farag, A. A. Synthesis and Antimicrobial Activity of 5-(Morpholinosulfonyl)Isatin Derivatives Incorporating a Thiazole Moiety. Drug Res. (Stuttg) 2015, 65, 373–379.
  • Sekularac, G. M.; Nikolic, J. B.; Petrovic, P.; Bugarski, B.; Đurovic, B.; Dramanic, S. Ž. Synthesis, Antimicrobial and Antioxidative Activity of Some New Isatin Derivatives. J. Serb. Chem. Soc. 2014, 79, 1347–1354.
  • Bozic, A. R.; Bjelogrlic, S. K.; Novakovic, I. T.; Filipovic, N. R.; Petrovic, P. M.; Marinkovic, A. D.; Todorovic, T. R.; Cvijetic, I. N. Antimicrobial Activity of Thiocarbohydrazones: Experimental Studies and Alignment-Independent 3D QSAR Models. ChemistrySelect 2018, 3, 2215–2221. DOI: 10.1002/slct.201702691.
  • Nalawade, A. M.; Nalawade, R. A.; Shejwal, R. V. Synthesis, Characterisation and Biological Activities of Some Aromatic Thiocarbohydrazones. Biosci. Discov. 2017, 8, 274–279.
  • Kolocouris, A.; Dimas, K.; Pannecouque, C.; Witvrouw, M.; Foscolos, G. B.; Stamatiou, G.; Fytas, G.; Zoidis, G.; Kolocouris, N.; Andrei, G.; et al. New (1-Adamantylcarbonyl)Pyridine and 1-Acetyladamantane Thiosemicarbazones-Thiocarbonohydrazones: Cell Growth Inhibitory, Antiviral and Antimicrobial Activity Evaluation. Bioorg. Med. Chem. Lett. 2002, 12, 723–727. DOI: 10.1016/S0960-894X(01)00838-1.
  • Kiran, G.; Maneshwar, T.; Rajeshwar, Y.; Sarangapani, M. Microwave-Assisted Synthesis, Characterization, Antimicrobial and Antioxidant Activity of Some New Isatin Derivatives. J. Chem. 2013, 2013, 1–7. DOI: 10.1155/2013/192039.
  • Fershtat, L. L.; Makhova, N. N. Molecular Hybridization Tools in the Development of Furoxan-Based NO-Donor Prodrugs. ChemMedChem 2017, 12, 622–638. DOI: 10.1002/cmdc.201700113.
  • Viegas-Junior, C.; Danuello, A.; Bolzani, V. S.; Barreiro, E. J.; Fraga, C. A. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. DOI: 10.2174/092986707781058805.
  • Lazar, C.; Kluczyk, A.; Kiyota, T.; Konishi, Y. Drug Evolution Concept in Drug Design: 1. Hybridization Method. J. Med. Chem. 2004, 47, 6973–6982. DOI: 10.1021/jm049637+.
  • Gabr, M. T.; El-Gohary, N. S.; El-Bendary, E. R.; El-Kerdawy, M. M.; Ni, N. Isatin-β-Thiocarbohydrazones: Microwave-Assisted Synthesis, Antitumor Activity and Structure-Activity Relationship. Eur. J. Med. Chem. 2017, 128, 36–44. DOI: 10.1016/j.ejmech.2017.01.030.
  • Pearson, R. D.; Steigbigel, R. T.; Davis, H. T.; Chapman, S. W. Method for Reliable Determination of Minimal Lethal Antibiotic Concentrations. Antimicrob. Agents Chemother. 1980, 18, 699–708. DOI: 10.1128/AAC.18.5.699.
  • Clinical Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; M100–S25.
  • El-Gohary, N. S.; Shaaban, M. I. Synthesis, Antimicrobial, Antiquorum-Sensing, and Cytotoxic Activities of New Series of Isoindoline-1,3-Dione, Pyrazolo[5,1-a]Isoindole and Pyridine Derivatives. Arch. Pharm. Chem. Life. Sci. 2015, 348, 666–680. DOI: 10.1002/ardp.201500037.
  • Holt, R. J. J. Laboratory Tests of Antifungal Drugs. J. Clin. Pathol. 1975, 28, 767–774. DOI: 10.1136/jcp.28.10.767.
  • Clinical Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; M27–A3.
  • Clinical Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard-Second Ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; M38–A2.
  • Miyazaki, Y.; Geber, A.; Miyazaki, H.; Falconer, D.; Parkin-Son, T.; Hitchcock, C.; Grimberg, B.; Nyswaner, K.; Bennett, J. E. Cloning, Sequencing, Expression and Allelic Sequence Diversity of ERG3 (C-5 Sterol Desaturase Gene) in Candida albicans. Gene 1999, 236, 43–51. DOI: 10.1016/S0378-1119(99)00263-2.
  • Berkow, E. L.; Lockhart, S. R. Fluconazole Resistance in Candida Species: A Current Perspective. Infect. Drug Resist. 2017, 10, 237–245. DOI: 10.2147/IDR.S118892.
  • Mellado, E.; Garcia-Effron, G.; Alcazar-Fuoli, L.; Melchers, W. J.; Verweij, P. E.; Cuenca-Estrella, M.; Rodriguez-Tudela, J. L. A New Aspergillus fumigatus Resistance Mechanism Conferring in Vitro Cross-Resistance to Azole Antifungals Involves a Combination of cyp51A Alterations. Antimicrob. Agents Chemother. 2007, 51, 1897–1904. DOI: 10.1128/AAC.01092-06.
  • Ferreira, M. E.; Colombo, A. L.; Paulsen, I.; Ren, Q.; Wortman, J.; Huang, J.; Goldman, M. H.; Goldman, G. H. The Ergosterol Biosynthesis Pathway, Transporter Genes, and Azole Resistance in Aspergillus fumigatus. Med. Mycol. 2005, 43, S313–S319. DOI: 10.1080/13693780400029114.
  • McClean, K. H.; Winson, M. K.; Fish, L.; Taylor, A.; Chhabra, S. R.; Camara, M.; Daykin, M.; Lamb, J. H.; Swift, S.; Bycroft, B. W.; et al. Quorum Sensing and Chromobacterium violaceum: Exploitation of Violacein Production and Inhibition for the Detection of N-Acyl Homoserine Lactones. Microbiol. 1997, 143, 3703–3711. DOI: 10.1099/00221287-143-12-3703.
  • McLean, R. J. C.; Pierson, L. S.; Fuqua, C. A Simple Screening Protocol for the Identification of Quorum Signal Antagonists. J. Microbiol. Meth. 2004, 58, 351–360. DOI: 10.1016/j.mimet.2004.04.016.
  • Cha, W.; Vattem, D. A.; Maitin, V.; Barnes, M. B.; Mclean, R. J. Bioassays of Quorum Sensing Compounds Using Agrobacterium tumefaciens and Chromobacterium violaceum. Methods Mol. Biol. 2011, 692, 3–19. DOI: 10.1007/978-1-60761-971-0.
  • Denizot, F.; Lang, R. Rapid Colorimetric Assay for Cell Growth and Survival. Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. J. Immunol. Meth. 1986, 89, 271–277. DOI: 10.1016/0022-1759(86)90368-6.
  • Gerlier, D.; Thomasset, T. Use of MTT Colorimetric Assay to Measure Cell Activation. J. Immunol. Meth. 1986, 94, 57–63. DOI: 10.1016/0022-1759(86)90215-2.
  • Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Meth. 1983, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4.
  • Kadam, R. U.; Roy, N. Recent Trends in Drug Likeness Prediction: A Comprehensive Review of In silico Methods. Indian J. Pharm. Sci. 2007, 69, 609–615. DOI: 10.4103/0250-474X.38464.
  • Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. DOI: 10.1021/jm020017n.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. DOI: 10.1016/S0169-409X(96)00423-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.