Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 22
511
Views
2
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Montmorillonite K10 catalyzed highly regioselective azidolysis of epoxides: A short and efficient synthesis of phenylglycine

, &
Pages 2923-2934 | Received 03 Aug 2018, Accepted 11 Sep 2018, Published online: 15 Nov 2018

References

  • (a) Parker, R. E.; Isaacs, N. S. Mechanisms of Epoxide Reactions. Chem. Rev. 1959, 59, 737–799. DOI: 10.1021/cr50028a006. (b) Padwa, A.; Kinder, F. R. Three-Membered Ring Systems. In Progress in Heterocyclic Chemistry, Suschitzky, H., Scriven, E. F. V., Eds.; Academic Press: Elsevier, 1990; Vol. 2, pp 22–36. DOI: 10.1016/B978-0-08-037070-5.50007-2. (c) Bartók, M.; Láng, K. L. Oxiranes. In Ethers, Crown Ethers, Hydroxyl Groups and Their Sulphur Analogues, Patai, S. Ed.; Wiley: New York, 1981; Vol. 2, pp 609–681. DOI: 10.1002/9780470771631.ch1. (d) Bergmeier, S. C.; Lapinsky, D. J. Three-Membered Ring Systems. In Progress in Heterocyclic Chemistry, Gribble, G. W., Joule, J. A., Eds.; Academic Press: Elsevier, 2011; Vol. 23, pp 75–100. DOI: 10.1016/B978-0-08-096805-6.00003-6. (e) Sello, G.; Fumagalli, T.; Orsini, F. Recent Developments in Epoxide Preparation. Curr. Org. Synth. 2006, 3, 457–476. DOI : 10.2174/157017906778699503.
  • (a) Bonini, C.; Righi, G. Regio- and Chemoselective Synthesis of Halohydrins by Cleavage of Oxiranes with Metal Halides. Synthesis. 1994, 1994, 225–238. DOI: 10.1055/s-1994-25445. (b) Smith, J. G. Synthetically Useful Reactions of Epoxides. Synthesis. 1984, 1984, 629–656. DOI: 10.1055/s-1984-30921. (c) Crotti, P.; Bussolo, V. D.; Favero, L.; Macchia, F.; Pineschi, M. Synthesis and Ring‐Opening Reactions of the Diastereoisomeric Cis‐ and Trans‐Epoxides Derived from 3‐(Benzyloxy)Cyclopentene and 2‐(Benzyloxy)‐2,5‐Dihydrofuran. Eur. J. Org. Chem. 1998, 1998, 1675–1686. DOI: 10.1002/(SICI)1099-0690(199808)1998:8<1675::AID-EJOC1675>3.0.CO;2-B.
  • Patai, S. Ed. The Chemistry of the Azido Group; Wiley: New York, 1971.
  • (a) Scriven, E. F. V.; Turnbull, K. Azides: Their Preparation and Synthetic Uses. Chem. Rev. 1988, 88, 297–368. DOI: 10.1021/cr00084a001. (b) Schubert, J.; Schwesinger, R.; Prinzbach, H. Total Synthesis of a Fortimicin Aglycone. Angew. Chem. Int. Ed. Engl. 1984, 23, 167–169. DOI: 10.1002/anie.198401671. (c) Coe, D. M.; Myers, L.; Parry, D. M.; Roberts, S. M.; Storerb, R. Synthesis of Compounds Active against HIV. Part 2. Preparation of Some 2′,3′-Dideoxy-6′-Fluorocarbocyclic Nucleosides. J. Chem. Soc. Chem. Commun. 1990, 151–153. DOI: 10.1039/C39900000151. (d) Chakraborty, T. K.; Laxman, P. Total Synthesis of (+)-Crocacin D. Tetrahedron Lett. 2002, 43, 2645–2648. DOI: 10.1016/S0040-4039(02)00289-7. (e) Hudlicky, T.; Nugent, T.; Griffith, W. Chemoenzymic Synthesis of D-Erythro- and L-threo-C18-Sphingosines. J. Org. Chem. 1994, 59, 7944–7946. DOI: 10.1021/jo00105a002. (f) Wipf, P.; Fritch, P. C. SN2'-Reactions of Peptide Aziridines. A Cuprate-Based Approach to (E)-Alkene Isosteres. J. Org. Chem. 1994, 59, 4875–4886. DOI: 10.1021/jo00096a033. (g) Swift, G.; Swern, D. Chemistry of Epoxy Compounds. XX. Stereospecific Syntheses of Cis- and Trans-1,2-Diaminocyclohexanes and Aliphatic Vicinal Diamines. J. Org. Chem. 1967, 32, 511–517. DOI: 10.1021/jo01278a001.
  • (a) Horton, D.; Wander, J. D. Naturally occurring amino sugars. In The Carbohydrates, Pigman, W., Horton, D., Eds.; Academic Press: New York, 1980; Vol. 1B, pp 643–760. (b) Jacobs, G. A.; Tino, J. A.; Zahler, R. Synthesis of SQ-32,829, a New Nucleoside Antiviral Agent. Tetrahedron Lett. 1989, 30, 6955–6958. DOI: 10.1016/S0040-4039(01)93396-9.
  • Nugent, T. C.; Hudlicky, T. Chemoenzymatic Synthesis of All Four Stereoisomers of Sphingosine from Chlorobenzene: Glycosphingolipid Precursors. J. Org. Chem. 1998, 63, 510–520. DOI: 10.1021/jo971335a.
  • (a) Sabitha, G.; Babu, R. S.; Rajkumar, M.; Yadav, J. S. Cerium(III) Chloride Promoted Highly Regioselective Ring Opening of Epoxides and Aziridines Using NaN3 in Acetonitrile: A Facile Synthesis of 1,2-Azidoalcohols and 1,2-Azidoamines. Org. Lett. 2002, 4, 343–345. DOI: 10.1021/ol016979q. (b) Chen, X.; Wu, H.; Xu, R.; Liu, M.; Ding, J.; Su, W. Gallium Trichloride–Promoted Highly Regioselective Ring Opening of Epoxides with NH4SCN and NaN3 in Water. Synth. Commun. 2008, 38, 1855–1865. DOI: 10.1080/00397910801981540. (c) Sarangi, C.; Das, N. B.; Nanda, B.; Nayak, A.; Sharma, R. P. An Efficient Nucleophilic Cleavage of Oxiranes to 1,2-Azido Alcohols. J. Chem. Res. (S). 1997, 378–379. DOI: 10.1039/A701358B. (d) Fringuelli, F.; Pizzo, F.; Vaccaro, L. Azidolysis of α,ß-Epoxycarboxylic Acids. A Water-Promoted Process Efficiently Catalyzed by Indium Trichloride at pH 4.0. J. Org. Chem. 2001, 66, 3554–3558. DOI: 10.1021/jo015564f.
  • Chini, M.; Crotti, P.; Macchia, F. Efficient Metal Salt Catalyzed Azidolysis of Epoxides with Sodium Azide in Acetonitrile. Tetrahedron Lett. 1990, 31, 5641–5644. DOI: 10.1016/S0040-4039(00)97921-8.
  • (a) Saito, S.; Yamashita, S.; Nishikawa, T.; Yokoyama, Y.; Inaba, M.; Moriwake, T. Highly Nucleophilic Tributyltin Azide in Oxirane Ring Cleavage Leading to 1,2-Azido Alcohol. Tetrahedron Lett. 1989, 30, 4153–4156. DOI: 10.1016/S0040-4039(00)99346-8. (b) Saito, S.; Nishikawa, T.; Yokoyama, Y.; Moriwake, T. Efficient Nucleophilic Oxirane Ring Cleavage with Dibutyltin Diazide. Tetrahedron Lett. 1990, 31, 221–224. DOI: 10.1016/S0040-4039(00)94376-4. (c) Davis, C. E.; Bailey, J. L.; Lockner, J. W.; Coates, R. M. Regio- and Stereoselectivity of Diethylaluminum Azide Opening of Trisubstituted Epoxides and Conversion of the 3° Azidohydrin Adducts to Isoprenoid Aziridines. J. Org. Chem. 2003, 68, 75–82. DOI: 10.1021/jo026506c.
  • Das, B.; Reddy, V. S.; Krishnaiah, M.; Rao, Y. K. Highly Regio- and Stereoselective Ring-Opening of Epoxides and Aziridines with Sodium Azide Using Ammonium-12-Molybdophosphate. J. Mol. Cat. A: Chem. 2007, 270, 89–92. DOI: 10.1016/j.molcata.2007.01.040.
  • (a) Lakshman, M.; Nadkarni, D. V.; Lehr, R. E. Regioselective Ring Opening of Polycyclic Aromatic Hydrocarbon Epoxides by Polymer-Supported Azide Anion. J. Org. Chem. 1990, 55, 4892. DOI: 10.1021/jo00303a025. (b) Tamami, B.; Iranpoor, N.; Rezaie, R. Synthesis of Azidohydrins, Nitrohydrins and Nitratohydrins from Epoxides Using Azide, Nitrite and Nitrate Exchange Resins. Iran. Polym. J. 2004, 13, 495–501.
  • Sabitha, G.; Babu, R. S.; Reddy, M. S. K.; Yadav, J. S. Ring Opening of Epoxides and Aziridines with Sodium Azide Using Oxone® in Aqueous Acetonitrile: A Highly Regioselective Azidolysis Reaction. Synthesis. 2002, 2254–2258. DOI: 10.1055/s-2002-34848.
  • Onaka, M.; Sugit, K.; Izumi, Y. Regioselective Ring-Opening Reactions of 2,3-Epoxy Alcohols with Sodium Azide Supported on Zeolite CaY. Chem. Lett. 1986, 15, 1327–1328. DOI: 10.1246/cl.1986.1327.
  • Schneider, C. Quaternary Ammonium Salt Catalyzed Azidolysis of Epoxides with Trimethylsilyl Azide. Synlett. 2000, 12, 1840–1842. DOI: 10.1055/s-2000-8687.
  • Tamami, B.; Mahdavi, H. Synthesis of Azidohydrins from Epoxides Using Quaternized Amino Functionalized Cross-Linked Polyacrylamide as a New Polymeric Phase-Transfer Catalyst. Tetrahedron Lett. 2001, 42, 8721–8724. DOI: 10.1016/S0040-4039(01)01891-3.
  • Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Ring Opening of Epoxides with Sodium Azide in Water. A Regioselective pH-Controlled Reaction. J. Org. Chem. 1999, 64, 6094–6096. DOI: 10.1021/jo990368i.
  • Righi, G.; Manni, L. M.; Bovicelli, P.; Pelagalli, R. A New, Simple, and Mild Azidolysis of Vinylepoxides. Tetrahedron Lett. 2011, 52, 3895–3896. DOI: 10.1016/j.tetlet.2011.05.085.
  • (a) Kumar, B. S.; Dhakshinamoorthy, A.; Pitchumani, K. K10 Montmorillonite Clays as Environmentally Benign Catalysts for Organic Reactions. Catal. Sci. Technol. 2014, 4, 2378–2396. DOI: 10.1039/C4CY00112E. (b) Chakraborti, A. K.; Kondaskar, A.; Rudrawar, S. Scope and Limitations of Montmorillonite K 10 Catalysed Opening of Epoxide Rings by Amines. Tetrahedron. 2004, 60, 9085–9091. DOI: 10.1016/j.tet.2004.07.077. (c) Mojtahedi, M. M.; Saidi, M. R.; Bolourtchian, M. Microwave-Assisted Aminolysis of Epoxides under Solvent-Free Conditions Catalyzed by Montmorillonite Clay. J. Chem. Res. 1999, 128–129. DOI: 10.1039/A804379E. (d) Chankeshwara, S. V.; Chakraborti, A. K. Montmorillonite K 10 and Montmorillonite KSF as New and Reusable Catalysts for Conversion of Amines to N-Tert-Butylcarbamates. J. Mol. Cat. A: Chem. 2006, 253, 198–202. DOI: 10.1016/j.molcata.2006.03.042. (e) Sharma, G.; Kumar, R.; Chakraborti, A. K. A Novel Environmentally Friendly Process for Carbon–Sulfur Bond Formation Catalyzed by Montmorillonite Clays. J. Mol. Cat. A: Chem. 2007, 263, 143–148. DOI: 10.1016/j.molcata.2006.08.021. (f) Somanathan, R.; Rivero, I. A.; Gama, A.; Ochoa, A.; Aguirre, G. Montmorillonite-K10 Catalyzed Addition of Trimethylsilylcyanide (TMSCN) to Aldehydes. Synth. Commun. 1998, 28, 2043–2048. DOI: 10.1080/00397919808007179. (g) Jayashree, S.; Shivashankar, K. Montmorillonite K-10 Catalyzed Mannich Reaction: Synthesis of Aminonaphthoquinone Derivatives from Lawsone. Synth. Commun. 2018, 48, 1805–1815. DOI: 10.1080/00397911.2018.1466334. (h) Nagendrappa, G. Organic Synthesis Using Clay and Clay-Supported Catalysts. Appl. Clay Sci. 2011, 53, 106–138. DOI: 10.1016/j.clay.2010.09.016. (i) Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. Montmorillonite KSF as an Inorganic, Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-Carboxylic Acids. J. Org. Chem. 1999, 64, 1033–1035. DOI: 10.1021/jo981794r.
  • Paul, S. Synthesis and Biological Evaluation of Alkaloids and Modified Nucleotide. PhD Thesis, University of Calcutta, 2012.
  • Hanessian, S.; Sakito, Y.; Dhanoa, D.; Baptistella, L. Synthesis of (+)-Palitantin. Tetrahedron. 1989, 45, 6623–6630. DOI: 10.1016/S0040-4020(01)89132-8.
  • (a) González, C.; Carballido, M.; Castedo, L. Synthesis of Polyhydroxycyclohexanes and Relatives from (-)-quinic acid. J. Org. Chem. 2003, 68, 2248–2255. DOI: 10.1021/jo026692m. (b) Crotti, P.; Di Bussolo, V.; Favero, L.; Macchia, F.; Renzi, G.; Roselli, G. Regiochemical Control of the Ring Opening of Aziridines by Means of Chelating Processes. Part 3: Regioselectivity of the Opening Reactions with Methanol of Remote O-Substituted Regio- and Diastereoisomeric Activated Aziridines under Condensed- and Gas-Phase Operating Conditions. Tetrahedron. 2002, 58, 7119–7133. DOI: 10.1016/S0040-4020(02)00726-3.
  • Williams, R. M.; Hendrix, J. A. Asymmetric Synthesis of Arylglycines. Chem. Rev. 1992, 92, 889–917. DOI: 10.1021/cr00013a007.
  • Müller, P.; Schütte, H. R. Z. m-Hydroxyphenylglycin Und 3.5-Dihydroxyphenylglycin, Zwei Neue Aminosäuren Aus Dem Latex Von Euphorbia helioscopia L. Naturforsch. 1968, 23B, 659–663. DOI: 10.1515/znb-1968-0516.
  • (a) Nicolaou, K. C.; Boddy, C. N. C.; Bräse, S.; Winssinger, N. Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics. Angew. Chem. Int. Ed. 1999, 38, 2096–2152. DOI: 10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F. (b) Van Bambeke, F.; Van Laethem, Y.; Courvalin, P.; Tulkens, P. M. Glycopeptide Antibiotics: From Conventional Molecules to New Derivatives. Drugs. 2004, 64, 913–936. DOI: 10.2165/00003495-200464090-00001. (c) Williams, D. H.; Raganada, V.; Williamson, M. P.; Bojesen, G. In Topics in Antibiotics Chemistry, Sammes, P. Ed.; Ellid Harwood: Chichester, 1980; Vol.5, pp 123.
  • (a) Watkins, J.; Collingridge, G. Phenylglycine Derivatives as Antagonists of Metabotropic Glutamate Receptors. Trends Pharmacol. Sci. 1994, 15, 333–342. DOI: 10.1016/0165-6147(94)90028-0. (b) Pin, J. P.; Duvoisin, R. The Metabotropic Glutamate Receptors: Structure and Functions. Neuropharmacology. 1995, 34, 1–26. DOI: 10.1016/0028-3908(94)00129-G. (c) Roberts, P. J. Pharmacological Tools for the Investigation of Metabotropic Glutamate Receptors (mGluRs): Phenylglycine Derivatives and Other Selective Antagonists-an Update. Neuropharmacology 1995, 34, 813–819. DOI: 10.1016/0028-3908(95)00094-M.
  • Townsend, C. A.; Brown, A. M. Nocardicin A: Biosynthetic Experiments with Amino Acid Precursors. J. Am. Chem. Soc. 1983, 105, 913–918. DOI: 10.1021/ja00342a046.
  • (a) Spencer, J. L.; Flynn, E. H.; Roeske, R. W.; Siu, F. Y.; Chauvette, R. R. Chemistry of Cephalosporin Antibiotics. VII. Synthesis of Cephaloglycin and Some Homologs. J. Med. Chem. 1966, 9, 746–750. DOI: 10.1021/jm00323a024. (b) Ryan, C. W.; Simon, R. L.; Van Heyningen, E. M. Chemistry ofcephalosporin antibiotics. XIII. Deacetoxycephalosporins. Synthesis of cephalexin and someanalogs. J. Med. Chem. 1969, 12, 310–313. (c) Chauvette, R. R.; Pennington, P. A. Chemistry ofcephalosporin antibiotics. 30. 3-Methoxy- and 3-halo-3-cephems. J. Med. Chem. 1975, 18, 403–408. DOI: 10.1021/jm00238a017.
  • Meijer, E. M.; Boesten, W. H. J.; Schoemaker, H. E.; van Balken, J. A. M. Use of Biocatalysts in the Industrial Production of Speciality Chemicals. In Biocatalysts in Organic Synthesis, Tramper, J., van der Plas, H. C., Linko, P. Eds.; Elsevier: Amsterdam, 1985; pp 135–156.
  • (a) Acemoglu, L.; Williams, J. M. J. Palladium-Catalysed Enantioselective Synthesis of Ibuprofen. J. Mol. Cat. A: Chem. 2003, 196, 3–11. DOI: 10.1016/S1381-1169(02)00629-5. (b) Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. A Novel Chromium Trioxide Catalyzed Oxidation of Primary Alcohols to the Carboxylic Acids. Tetrahedron Lett. 1998, 39, 5323–5326. DOI: 10.1016/S0040-4039(98)00987-3.
  • Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. A Greatly Improved Procedure for Ruthenium Tetroxide Catalyzed Oxidations of Organic Compounds. J. Org. Chem. 1981, 46, 3936–3938. DOI: 10.1021/jo00332a045.
  • Krajewski, K.; Ciunik, Z.; Siemion, I. Z. Stereoisomers of 4-Amino-3-Hydroxy-1-Cyclohexanecarboxylic Acid and 4-Amino-3-Oxo-1-Cyclohexanecarboxylic Acid as Mimetics of a Twisted Cis-Amide Bond. Tetrahedron: Asymmetry. 2001, 12, 455–462. DOI: 10.1016/S0957-4166(01)00062-3.
  • Hua, M. F.; Ning, C.; Xi, X. J. An Efficient and Facile Synthesis of N-Cbz-β-Aminoalkanesulfonamides. Sci. China Chem. 2012, 55, 2548–2553. DOI: 10.1007/s11426-012-4607-9.
  • Bal, B. S.; Childers, W. E.; Pinnick, H. W. Oxidation of α,β-un Saturated Aldehydes. Tetrahedron. 1981, 37, 2091–2096. DOI: 10.1016/S0040-4020(01)97963-3.
  • Duttagupta, I.; Goswami, K.; Sinha, S. Synthesis of Cyclic α-Hydrazino Acids. Tetrahedron. 2012, 68, 8347–8357. DOI: 10.1016/j.tet.2012.07.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.