Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 5
555
Views
4
CrossRef citations to date
0
Altmetric
Articles

Synthesis of 2-cyanoacrylamides through Pd-catalyzed monohydration of methylenemalononitriles

, , , , , , , & show all
Pages 662-671 | Received 29 Jun 2018, Published online: 12 Feb 2019

References

  • Zil'berman, E. N. New Trends in the Hydration of Nitriles. Russ. Chem. Rev. 1984, 53, 900. DOI: 10.1070/RC1984v053n09ABEH003130.
  • (a) Hauser, C. R.; Eby, C. J. The Conversion of β-Ketonitriles to β-Ketoamides by Boron Fluoride in Aqueous Acetic Acid and by Polyphosphoric Acid. J. Am. Chem. Soc. 1957, 79, 725-727. DOI: 10.1021/ja01560a061 (b) Kornblum, N.; Singaram, S. The Conversion of Nitriles to Amides and Esters to Acids by the Action of Sodium Superoxide. J. Org. Chem. 1979, 44, 4727-4729. DOI: 10.1021/jo00393a063.
  • Kobayashi, M.; Nagasawa, T.; Yamada, H. Enzymatic Synthesis of Acrylamide: A Success Story Not yet over. Trends Biotechnol. 1992, 10, 402-408. DOI: 10.1016/0167-7799(92)90283-2.
  • (a) Breslow, R.; Fairweather, R.; Keana, J. Metal-Catalyzed Hydration of Phenanthroline Nitrile. J. Am. Chem. Soc. 1967, 89, 2135-2138. DOI: 10.1021/ja00985a027; (b) Breslow, R.; Schmir, M. Strongly Catalyzed Ligand-Ligand Reaction within a Mixed Metal Complex. J. Am. Chem. Soc. 1971, 93, 4960-4961. DOI: 10.1021/ja00748a078; (c) Buckingham, D. A.; Sargeson, A. M.; Zanella, A. Reactions of Coordinated Nucleophiles. Formation of an Amide from a Nitrile. J. Am. Chem. Soc. 1972, 94, 8246-8247. DOI: 10.1021/ja00778a059;(d) Schibler, W.; Kaden, T. A. Cu2+-Promoted Hydrolysis of Cyanomethyl-Substituted Tetra-Azamacrocycles. J. Chem. Soc., Chem. Commun. 1981, 12, 603-604. DOI: 10.1039/C39810000603; (e) Villain, G.; Gaset, A.; Kalck, P. Selective Catalysis of the Hydration of Nitriles into Amides. Part II. Kinetic Investigation of the Reaction Catalyzed by [PdCl(OH)(Bipy)(H2O)]. Generalization of the Reaction. J. Mol. Catal. 1981, 12, 103-111. DOI: 10.1016/0304-5102(81)80022-3; (f) Ravindranathan, M.; Kalyanam, N.; Sivaram, S. Neutral, Regioselective, Copper-Catalyzed Hydration of Some Nitriles to Amides. J. Org. Chem. 1982, 47, 4812-4813. DOI: 10.1021/jo00145a052; (g) Murahashi, S.; Sasao, S.; Saito, E.; Naota, T. Ruthenium-Catalyzed Hydration of Nitriles and Transformation of δ-Keto Nitriles to Ene-Lactams. J. Org. Chem. 1992, 57, 2521-2523. DOI: 10.1021/jo00035a003; (h) Murahashi, S.-I.; Sasao, S.; Saito, E.; Naota, T. Ruthenium-Catalyzed Hydration of Nitriles and Transformation of δ-Ketonitriles to Ene-Lactams: total Synthesis of (−)-Pumiliotoxin C. Tetrahedron. 1993, 49, 8805-8826. DOI: 10.1016/S0040-4020(01)81902-5; (i) Ghaffar, T.; Parkins, A. W. A New Homogeneous Platinum Containing Catalyst for the Hydrolysis of Nitriles. Tetrahedron Lett. 1995, 36, 8657-8660. DOI: 10.1016/0040-4039(95)01785-G; (j) Angus, P. M.; Jackson, W. G. Occurrence of Neighboring Group Participation Reactions in Amide-N and Amidine Complexes Derived from Pentaammine(dinitrile)Cobalt(III) Ions. Inorg. Chem. 1996, 35, 7196-7204. DOI: 10.1021/ic960032g; (k) Ghaffar, T.; Parkins, A. W. The Catalytic Hydration of Nitriles to Amides Using a Homogeneous Platinum Phosphinito Catalyst. J. Mol. Catal. A: Chem. 2000, 160, 249-261. DOI: 10.1016/S1381-1169(00)00253-3; (l) Murahashi, S.-I.; Takaya, H. Low-Valent Ruthenium and Iridium Hydride Complexes as Alternatives to Lewis Acid and Base Catalysts. Acc. Chem. Res. 2000, 33, 225-233. DOI: 10.1021/ar980085x; (m) Kukushkin, V. Y.; Pombeiro, A. J. L. Additions to Metal-Activated Organonitriles. Chem. Rev. 2002, 102, 1771-1802. DOI: 10.1021/cr0103266; (n) Mascharak, P. K. Structural and Functional Models of Nitrile Hydratase. Coord. Chem. Rev. 2002, 225, 201-214. DOI: 10.1016/S0010-8545(01)00413-1; (o) Harrop, T. C.; Mascharak, P. K. Fe(III) and Co(III) Centers with Carboxamido Nitrogen and Modified Sulfur Coordination: Lessons Learned from Nitrile Hydratase. Acc. Chem. Res. 2004, 37, 253-260. DOI: 10.1021/ar0301532; (p) Jiang, X-b.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Platinum-Catalyzed Selective Hydration of Hindered Nitriles and Nitriles with Acid- or Base-Sensitive Groups. J. Org. Chem. 2004, 69, 2327-2331. DOI: 10.1021/jo035487j; (q) Kukushkin, V. Y.; Pombeiro, A. J. L. Metal-Mediated and Metal-Catalyzed Hydrolysis of Nitriles. Inorg. Chim. Acta. 2005, 358, 1-21. DOI: 10.1016/j.ica.2004.04.029; (r) Crestani Marco, G.; Arévalo, A.; García Juventino, J. Catalytic Hydration of Benzonitrile and Acetonitrile Using Nickel(0). Adv. Synth. Catal. 2006, 348, 732-742. DOI: 10.1002/adsc.200505382; (s) Stepanenko Iryna, N.; Cebrián‐Losantos, B.; Arion Vladimir, B.; Krokhin Artem, A.; Nazarov Alexey, A.; Keppler Bernhard, K. The Complexes [OsCl2(azole)2(dmso)2] and [OsCl2(azole)(Dmso)3]: Synthesis, Structure, Spectroscopic Properties and Catalytic Hydration of Chloronitriles. Eur. J. Inorg. Chem. 2007, 2007, 400-411. DOI: 10.1002/ejic.200600859;(t) Goto, A.; Endo, K.; Saito, S. Rh‐Catalyzed Hydration of Organonitriles under Ambient Conditions. Angew. Chem. Int. Ed. 2008, 47, 3607-3609. DOI: 10.1002/anie.200800366; (u) Thallaj, N. K.; Przybilla, J.; Welter, R.; Mandon, D. A Ferrous Center as Reaction Site for Hydration of a Nitrile Group into a Carboxamide in Mild Conditions. J. Am. Chem. Soc. 2008, 130, 2414-2415. DOI: 10.1021/ja710560g; (v) Ramón Rubén, S.; Marion, N.; Nolan Steven, P. Gold Activation of Nitriles: Catalytic Hydration to Amides. Chem. Eur. J. 2009, 15, 8695-8697. DOI: 10.1002/chem.200901231; (w) Ahmed, T. J.; Knapp, S. M. M.; Tyler, D. R. Frontiers in Catalytic Nitrile Hydration: Nitrile and Cyanohydrin Hydration Catalyzed by Homogeneous Organometallic Complexes. Coord. Chem. Rev. 2011, 255, 949-974. DOI: 10.1016/j.ccr.2010.08.018; (x) Ichikawa, S.; Miyazoe, S.; Matsuoka, O. A Highly Efficient Cu/Al(OH)3 Catalyst for the Hydration of Acrylonitrile to Acrylamide. Chem. Lett. 2011, 40, 512-514. DOI: 10.1246/cl.2011.512; (y) Li, Z.; Wang, L.; Zhou, X. An Efficient and Practical Protocol for Catalytic Hydrolysis of Nitriles by a Copper(I) Complex in Water. Adv. Synth. Catal. 2012, 354, 584-588. DOI: 10.1002/adsc.201100812.
  • Breuilles, P.; Leclerc, R.; Uguen, D. A Mild Hydration of Nitriles into Amides. Tetrahedron Lett. 1994, 35, 1401-1404. DOI: 10.1016/S0040-4039(00)76229-0.
  • Grigg, R.; Hasakunpaisarn, A.; Kilner, C.; Kongkathip, B.; Kongkathip, N.; Pettman, A.; Sridharan, V. Catalytic Processes for the Functionalisation and Desymmetrisation of Malononitrile Derivatives. Tetrahedron. 2005, 61, 9356-9367. DOI: 10.1016/j.tet.2005.07.048.
  • Kiss, Á.; Hell, Z. A Heterogeneous Catalytic Method for the Conversion of Nitriles into Amides Using Molecular Sieves Modified with Copper(II). Tetrahedron Lett. 2011, 52, 6021-6023. DOI: 10.1016/j.tetlet.2011.09.012.
  • (a) García, ‐Garrido Sergio, E.; Francos, J.; Cadierno, V.; Basset, J. M.; Polshettiwar, V. Chemistry by Nanocatalysis: First Example of a Solid‐Supported RAPTA Complex for Organic Reactions in Aqueous Medium. ChemSusChem. 2010, 4, 104-111. DOI: 10.1002/cssc.201000280; (b) Baig, R. B. N.; Varma, R. S. A Facile One-Pot Synthesis of Ruthenium Hydroxide Nanoparticles on Magnetic Silica: aqueous Hydration of Nitriles to Amides. Chem. Commun. 2012, 48, 6220-6222. DOI: 10.1039/C2CC32566G.
  • Rauf, A.; Awan, F. S.; Mumtaz, S.; Sharif, A.; Ahmed, E.; Arshad, M.; Kausar, F.; Yasmin, G.; Qureshi, A. M. Regiospecific MnO2 Catalyzed Hydration of Phenylmethylene Malononitriles to Cyanophenylacrylamides by Oximes. J. Chem. Soc. Pak. 2012, 34, 728-731.
  • (a) Krishnan, S.; Miller, R. M.; Tian, B.; Mullins, R. D.; Jacobson, M. P.; Taunton, J. Design of Reversible, Cysteine-Targeted Michael Acceptors Guided by Kinetic and Computational Analysis. J. Am. Chem. Soc. 2014, 136, 12624-12630. DOI: 10.1021/ja505194w; (b) London, N.; Miller, R. M.; Krishnan, S.; Uchida, K.; Irwin, J. J.; Eidam, O.; Gibold, L.; Cimermancic, P.; Bonnet, R.; Shoichet, B.; K.; et al. Covalent Docking of Large Libraries for the Discovery of Chemical Probes. Nat. Chem. Biol. 2014, 10, 1066-1072. DOI: 10.1038/nchembio.1666.
  • Nitsche, C.; Steuer, C.; Klein, C. D. Arylcyanoacrylamides as Inhibitors of the Dengue and West Nile Virus Proteases. Bioorg. Med. Chem. 2011, 19, 7318-7337. DOI: 10.1016/j.bmc.2011.10.061.
  • Song, Q.; Wang, Y.; Hu, C.; Zhang, Y.; Sun, J.; Wang, K.; Zhang, C. Effect of Stacking Mode on the Mechanofluorochromic Properties of 3-Aryl-2-Cyano Acrylamide Derivatives. New J. Chem. 2015, 39, 659-663. DOI: 10.1039/C4NJ01492H.
  • Xin, X.; Xiang, D.; Yang, J.; Zhang, Q.; Zhou, F.; Dong, D. Homogeneous and Stereoselective Copper(II)-Catalyzed Monohydration of Methylenemalononitriles to 2-Cyanoacrylamides. J. Org. Chem. 2013, 78, 11956-11961. DOI: 10.1021/jo401997v.
  • (a) Moison, H.; Texier-Boullet, F.; Foucaud, A. Knoevenagel, Wittig and Wittig-Horner Reactions in the Presence of Magnesium Oxide or Zinc Oxide. Tetrahedron. 1987, 43, 537-542. DOI: 10.1016/S0040-4020(01)89986-5; (b) Kumbhare, R. M.; Sridhar, M. Magnesium Fluoride Catalyzed Knoevenagel Reaction: An Efficient Synthesis of Electrophilic Alkenes. Catal. Commun. 2008, 9, 403-405. DOI: 10.1016/j.catcom.2007.07.027.
  • Li, P.; Teng, B. T.; Jin, F. G.; Li, X. S.; Zhu, W. D.; Xie, J. W. Synthesis of Functionalized 2,3-Dihydroisoxazoles by Domino Reactions in Water and Unexpected Ring-Opening Reactions of 2,3-Dihydroisoxazoles. Org. Biomol. Chem. 2012, 10, 244-247. DOI: 10.1039/c1ob06318a.
  • Kamble, S. B.; Rode, C. V. Cascade Synthesis of 2-Cyanoacrylamides through Deacetalization and/or Knoevenagel Condensation Followed by Selective Monohydration of Acetals and Aldehydes over Solid Acid Ferrites. ChemCatChem. 2016, 8, 2678-2687. DOI: 10.1002/cctc.201600426.
  • (a) Kaupp, G.; Reza Naimi-Jamal, M.; Schmeyers, J. Solvent-Free Knoevenagel Condensations and Michael Additions in the Solid State and in the Melt with Quantitative Yield. Tetrahedron. 2003, 59, 3753-3760. DOI: 10.1016/S0040-4020(03)00554-4; (b) Rai, S. K.; Khanam, S.; Khanna, R. S.; Tewari, A. K. Cascade Synthesis of 2-Pyridones Using Acrylamides and Ketones. RSC Adv. 2014, 4, 44141-44145. DOI: 10.1039/C4RA06619G; (c) Narendar Reddy, T.; Raktani, B.; Perla, R.; Ravinder, M.; Vaidya, J. R.; Babu, N. J. An Efficient Catalyst-Free One-Pot Synthesis of Primary Amides from the Aldehydes of the Baylis-Hillman Reaction. New J. Chem. 2017, 41, 9203-9209. DOI: 10.1039/C7NJ01965C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.