Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 6
304
Views
12
CrossRef citations to date
0
Altmetric
Articles

An efficient heterogeneous gold(I)-catalyzed intermolecular cycloaddition of 2-aminoaryl carbonyls and internal alkynes leading to polyfunctionalized quinolines

, , &
Pages 799-813 | Received 20 Oct 2018, Published online: 16 Feb 2019

References

  • (a) Behenna, D. C.; Stockdill, J. L.; Stoltz, B. M. The Biology and Chemistry of the Zoanthamine Alkaloids. Angew. Chem. Int. Ed. Engl. 2008, 47, 2365-2386. DOI: 10.1002/anie.200703172. (b) Barluenga, J.; Rodriguez, F.; Fananas, F. J. Recent Advances in the Synthesis of Indole and Quinoline Derivatives through Cascade Reactions. Chem. Asian J. 2009, 4, 1036-1048. DOI: 10.1002/asia.200900018. (c) Chung, P. Y.; Bian, Z. X.; Pun, H. Y.; Chan, D.; Chan, A. S. C.; Chui, C. H.; Tang, J. C. O.; Lam, K. H. Recent Advances in Research of Natural and Synthetic Bioactive Quinolines. Future Med. Chem. 2015, 7, 947-967. DOI: 10.4155/fmc.15.34. (d) Michael, J. P. Quinoline, Quinazoline and Acridonealkaloids. Nat. Prod. Rep. 2008, 25, 166-187. DOI: 10.1039/B612168N.
  • Leon, B.; Fong, J. C. N.; Peach, K. C.; Wong, W. R.; Yildiz, F. H.; Linington, R. G. Development of Quinoline-based Disruptors of Biofilm Formation against Vibrio Cholerae. Org. Lett. 2013, 15, 1234-1237. DOI: 10.1021/ol400150z.
  • Kouznetsov, V. V.; Gomez, C. M. M.; Derita, M. G.; Svetaz, L.; del Olmo, E.; Zacchino, S. A. Synthesis and Antifungal Activity of Diverse C-2 Pyridinyl and Pyridinylvinyl Substituted Quinolines. Bioorg. Med. Chem. 2012, 20, 6506-6512. DOI: 10.1016/j.bmc.2012.08.036.
  • Yang, X. Z.; Feng, Y. J.; Duffy, S.; Avery, V. M.; Camp, D.; Quinn, R. J.; Davis, R. A. A New Quinoline Epoxide from the Australian Plant Drummondita Calida. Planta Med. 2011, 77, 1644-1647. DOI: 10.1055/s-0030-1270963.
  • Liu, J.; Li, C. J.; Ni, L.; Yang, J. Z.; Li, L.; Zang, C. X.; Bao, X. Q.; Zhang, D.; Zhang, D. M. Anti-inflammatory Alkaloid Glycoside and Quinoline Alkaloid Derivates from the Stems of Clausena Lansium. RSC Adv. 2015, 5, 80553-80560. DOI: 10.1039/C5RA14173G.
  • Guan, L. P.; Jin, Q. H.; Wang, S. F.; Li, F. N.; Quan, Z. S. Synthesis and Anticonvulsant Activity of 5-phenyl-[1,2,4]-Triazolo[4,3-a]Quinolines. Arch. Pharm. (Weinheim) 2008, 341, 774-779. DOI: 10.1002/ardp.200800116.
  • Ibrahim, D. A.; Abou El Ella, D. A.; El-Motwally, A. M.; Aly, R. M. Molecular Design and Synthesis of Certain New Quinoline Derivatives Having Potential Anticancer Activity. Eur. J. Med. Chem. 2015, 102, 115-131. DOI: 10.1016/j.ejmech.2015.07.030.
  • Pierre, F.; O'Brien, S. E.; Haddach, M.; Bourbon, P.; Schwaebe, M. K.; Stefan, E.; Darjania, L.; Stansfield, R.; Ho, C.; Siddiqui-Jain, A.; et al. Novel Potent Pyrimido[4,5-c]quinoline Inhibitors of Protein Kinase CK2: SAR and Preliminary Assessment of Their Analgesic and anti-viral Properties. Bioorg. Med. Chem. Lett. 2011, 21, 1687-1691. DOI: 10.1016/j.bmcl.2011.01.091.
  • (a) Eisch, J. J.; Dluzniewski, T. Mechanism of the Skraup and Doebner-von Miller Quinoline Syntheses. Cyclization of Alpha, Beta-Unsaturated N-aryliminium Salts via 1,3-Diazetidinium Ion Intermediates. J. Org. Chem. 1989, 54, 1269-1274. DOI: 10.1021/jo00267a010. (b) Denmark, S. E.; Venkatraman, S. On the Mechanism of the Skraup − Doebner − Von Miller Quinoline Synthesis. J. Org. Chem. 2006, 71, 1668-1676. DOI: 10.1021/jo052410h.
  • Bergstrom, F. W. Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline. Chem. Rev. 1944, 35, 77-277. DOI: 10.1021/cr60111a001.
  • (a) Nitidandhaprabhas, O . Doebner's Reaction with 6-Methyl-2-amino Pyridine. Nature. 1966, 212, 504-505. DOI: 10.1038/212504b0. (b) Born, J. L. Mechanism of Formation of Benzo[g]quinolones via the Combes Reaction. J. Org. Chem. 1972, 37, 3952-3953. DOI: 10.1021/jo00797a045.
  • Cragoe, E. J.; Robb, C. M. 3-Hydroxyquinoline. Org. Synth. 1973, 5, 635-640. DOI: 10.15227/orgsyn.040.0054.
  • McNaughton, B. R.; Miller, B. L. A Mild and Efficient One-step Synthesis of Quinolines. Org. Lett. 2003, 5, 4257-4259. DOI: 10.1021/ol035333q.
  • (a) Zhou, W.; Lei, J.; Palladium-catalyzed Synthesis of Polysubstituted Quinolines from 2-amino Aromatic Ketones and Alkynes. Chem. Commun. 2014, 50, 5583-5585. DOI: 10.1039/C4CC00939H. (b) Zheng, J.; Li, Z.; Huang, L.; Wu, W.; Li, J.; Jiang, H. Palladium-Catalyzed Intermolecular Aerobic Annulation of O-Alkenylanilines and Alkynes for Quinoline Synthesis. Org. Lett. 2016, 18, 3514-3517. DOI: 10.1021/acs.orglett.6b01008.
  • (a) Horn, J.; Marsden, S. P.; Nelson, A.; House, D.; Weingarten, G. G.; Convergent, Regiospecific Synthesis of Quinolines from O-Aminophenylboronates. Org. Lett. 2008, 10, 4117-4120. DOI: 10.1021/ol8016726. (b) Neuhaus, J. D.; Morrow, S. M.; Brunavs, M.; Willis, M. C. Diversely Substituted Quinolines via Rhodium-Catalyzed Alkyne Hydroacylation. Org. Lett. 2016, 18, 1562-1565. DOI: 10.1021/acs.orglett.6b00390.
  • (a) Cho, C. S.; Kim, B. T.; Kim, T. J.; Shim, S. C. Ruthenium-catalysed Oxidative Cyclisation of 2-Aminobenzyl Alcohol with Ketones: Modified Friedlaender Quinoline Synthesis. Chem. Commun. 2001, 2576-2577. DOI: 10.1039/B109245F. (b) Motokura, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Multifunctional Catalysis of a Ruthenium-grafted Hydrotalcite: One-Pot Synthesis of Quinolines from 2-aminobenzyl Alcohol and Various Carbonyl Compounds via Aerobic Oxidation and Aldol Reaction. K. Tetrahedron Lett. 2004, 45, 6029-6032. DOI: 10.1016/j.tetlet.2004.06.023
  • Li, H.; Wang, C.; Huang, H.; Xu, X.; Li, Y. Silver-catalyzed Cascade Reaction of O-Aminoaryl Compounds with Alkynes: An Aniline Mediated Synthesis of 2-Substituted Quinolines. Tetrahedron Lett. 2011, 52, 1108-1111. DOI: 10.1016/j.tetlet.2010.12.102.
  • (a) Duvelleroy, D.; Perrio, C.; Parisel, O.; Lasne, M. C. Rapid Synthesis of Quinoline-4-Carboxylic Acid Derivatives from Arylimines and 2-Substituted Acrylates or Acrylamides under Indium(iii) Chloride and Microwave Activations. Scope and Limitations of the Reaction. Org. Biomol. Chem. 2005, 3, 3794-3804. DOI: 10.1039/b509400c. (b) Jia, X.; Peng, F.; Qing, C.; Huo, C.; Wang, X. Catalytic Radical Cation Salt Induced C sp 3 -H Functionalization of Glycine Derivatives: Synthesis of Substituted Quinolines. Org. Lett. 2012, 14, 4030-4033. DOI: 10.1021/ol301909g.
  • Xu, X.; Yang, Y.; Zhang, X.; Yi, W. Direct Synthesis of Quinolines via Co(III)-Catalyzed and DMSO-Involved C-H Activation/Cyclization of Anilines with Alkynes. Org. Lett. 2018, 20, 566-569. DOI: 10.1021/acs.orglett.7b03673.
  • (a) Patil, N. T.; Raut, V. S. Cooperative Catalysis with Metal and Secondary Amine: Synthesis of 2-Substituted Quinolines via Addition/Cycloisomerization Cascade. J. Org. Chem. 2010, 75, 6961-6964. DOI: 10.1021/jo101103a. (b) Xia, X.; Zhang, L.; Song, X.; Liu, X.; Liang, Y. Copper-Catalyzed Oxidative Cyclization of Enynes for the Synthesis of 4-Carbonyl-Quinolines with O2. Org. Lett. 2012, 14, 2480-2483. DOI: 10.1021/ol300896h. (c) Wang, Y.; Chen, C.; Peng, J.; Li, M. Copper(II)-Catalyzed Three-component Cascade Annulation of Diaryliodoniums, Nitriles, and Alkynes: A Regioselective Synthesis of Multiply Substituted Quinolines. Angew. Chem. Int. Ed. Engl. 2013, 52, 5323-5327. DOI: 10.1002/anie.201300586. (d) Xie, Z.; Jia, J.; Liu, X.; Liu, L. Copper(II) Triflate-Catalyzed Aerobic Oxidative C-H Functionalization of Glycine Derivatives with Olefins and Organoboranes. Adv. Synth. Catal. 2016, 358, 919-925. DOI: 10.1002/adsc.201501015.
  • (a) Li, H.; Xu, X.; Yang, J.; Xie, X.; Huang, H.; Li, Y. Iron-Catalyzed Cascade Reaction of Ynone with O-Aminoaryl Compounds: A Michael Addition-Cyclization Approach to 3-Carbonyl Quinolines. Y. Tetrahedron Lett. 2011, 52, 530-534. DOI: 10.1016/j.tetlet.2010.11.106. (b) Richter, H.; Mancheno, O. G. TEMPO Oxoammonium Salt-Mediated Dehydrogenative Povarov/Oxidation Tandem Reaction of N-Alkyl Anilines. Org. Lett. 2011, 13, 6066-6069. DOI: 10.1021/ol202552y. (c) Zhong, M.; Sun, S.; Cheng, J.; Shao, Y. Iron-Catalyzed Cyclization of Nitrones with Geminal-Substituted Vinyl Acetates: A Direct [4 + 2] Assembly Strategy Leading to 2,4-Disubstituted Quinolines. J. Org. Chem. 2016, 81, 10825-10831. DOI: 10.1021/acs.joc.6b01910.
  • Korivi, R. P.; Cheng, C. Nickel-catalyzed Cyclization of 2-Iodoanilines with Aroylalkynes: An Efficient Route for Quinoline Derivatives. J. Org. Chem. 2006, 71, 7079-7082. DOI: 10.1021/jo060800d.
  • (a) Ahmed, W.; Zhang, S.; Yu, X.; Yamamoto, Y.; Bao, M. Brønsted Acid-Catalyzed Metal- and Solvent-Free Quinoline Synthesis from N-alkyl Anilines and Alkynes or Alkenes. Green Chem. 2018, 20, 261-265. DOI: 10.1039/C7GC03175K. (b) Zhang, L.; Chen, S.; Gao, Y.; Zhang, P.; Wu, Y.; Tang, G.; Zhao, Y. Tert-Butyl Hydroperoxide Mediated Cascade Synthesis of 3-Arylsulfonylquinolines. Org. Lett. 2016, 18, 1286-1289. DOI: 10.1021/acs.orglett.6b00198.
  • (a) In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K.; Toste, F. D., Eds.; Wiley-VCH: Weinheim, 2012. (b) Corma, A.; Leyva-Perez, A.; Sabater, M. J. Gold-Catalyzed Carbon-Heteroatom Bond-Forming Reactions. Chem. Rev. 2011, 111, 1657-1712. DOI: 10.1021/cr100414u. (c) Dorel, R.; Echavarren, A. M. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028-9072. DOI: 10.1021/cr500691k. (d) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Recent Advances in Gold-Catalyzed N- and O-Functionalizations of Alkynes with Nitrones, Nitroso, Nitro and Nitroxy Species. Adv. Synth. Catal. 2016, 358, 1348-1367. DOI: 10.1002/adsc.201600018. (e) Pflasterer, D.; Hashmi, A. S. K. Gold Catalysis in Total Synthesis - Recent Achievements. Chem. Soc. Rev. 2016, 45, 1331-1367. DOI: 10.1039/C5CS00721F. (f) Hashmi, A. S. K.; Hutchings, G. J. Gold Catalysis. Angew Chem. Int. Ed. 2006, 45, 7896-7936. DOI: 10.1002/anie.200602454. (g) Hashmi, A. S. K. Gold-Catalyzed Organic Reactions. Chem. Rev. 2007, 107, 3180-3211. DOI: 10.1021/cr000436x.
  • (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. A New Gold-Catalyzed C-C Bond Formation this Work was Supported by the Deutsche Forschungsgemeinschaft (Ha 1932/5-1, Ha 1932/6-1) and the Fonds Der Chemischen Industrie. Gold Salts Were Donated by Degussa-Hüls AG. A.S.K.H. is Indebted to Prof. M. Göbel for Laboratory Space. Angew. Chem. Int. Ed. Engl. 2000, 39, 2285-2288. DOI: 10.1002/1521-3773. (b) Pennell, M. N.; Foster, R. W.; Turner, P. G.; Hailes, H. C.; Tame, C. J.; Sheppard, T. D. Gold Catalysed Synthesis of 3-Alkoxyfurans at Room Temperature. Chem. Commun. 2014, 50, 1302-1305. DOI: 10.1039/C3CC48290A. (c) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. Highly Selective Gold-Catalyzed Arene Synthesis. J. Am. Chem. Soc. 2000, 122, 11553-11554. DOI: 10.1021/ja005570d. (d). Hashmi, A. S. K.; Sinha, P. Gold Catalysis: Mild Conditions for the Transformation of Alkynyl Epoxides to Furans. P. Adv. Synth. Catal. 2004, 346, 432-438. DOI: 10.1002/adsc.200303201. (e). Belting, V.; Krause, N. Gold-Catalyzed Cycloisomerization of Alk-4-yn-1-Ones. Org. Biomol. Chem. 2009, 7, 1221-1225. DOI: 10.1039/B819704K. (f) Hashmi, A. S. K.; Haffner, T.; Rudolph, M.; Rominger, F. Cyclization of 2-Alkynylallyl Alcohols to Highly Substituted Furans by Gold(I)-Carbene Complexes. Eur. J. Org. Chem. 2011, 2011, 667-671. DOI: 10.1002/ejoc.201001479. (g) Blanco Jaimes, M. C.; Weingand, V.; Rominger, F.; Hashmi, A. S. K. From Ynamides to Highly Substituted Benzo[b]Furans: Gold(I)-Catalyzed 5-Endo-Dig-Cyclization/Rearrangement of Alkylic Oxonium Intermediates. Chemistry. 2013, 19, 12504-12511. DOI: 10.1002/chem.201301595. (h) Wang, T.; Shi, S.; Vilhelmsen, M. H.; Zhang, T.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chemoselectivity Control: Gold(I)-Catalyzed Synthesis of 6,7-Dihydrobenzofuran-4(5H)-Ones and Benzofurans from 1-(Alkynyl)-7-Oxabicyclo[4.1.0]heptan-2-Ones. Chemistry. 2013, 19, 12512-12516. DOI: 10.1002/chem.201301698. (i) Minkler, S. R. K.; Isley, N. A.; Lippincott, D. J.; Krause, N.; Lipshutz, B. H. Leveraging the Micellar Effect: Gold-Catalyzed Dehydrative Cyclizations in Water at Room Temperature. Org. Lett. 2014, 16, 724-726. DOI: 10.1021/ol403402h. (j) Wang, T.; Shi, S.; Hansmann, M. M.; Rettenmeier, E.; Rudolph, M.; Hashmi, A. S. K. Synthesis of Highly Substituted 3-Formylfurans by a Gold(I)-Catalyzed Oxidation/1,2-Alkynyl Migration/Cyclization Cascade. Angew. Chem. Int. Ed. Engl. 2014, 53, 3715-3719. DOI: 10.1002/anie.201310146. (k) Wang, T.; Shi, S.; Rudolph, M.; Hashmi, A. S. K. Synthesis of Fully Substituted 3-Formyl-4-Iodofurans via a Gold(I)-Catalyzed Oxidation/1,2-Alkynyl Migration/Cyclization/Iodination Cascade. Adv. Synth. Catal. 2014, 356, 2337-2342. DOI: 10.1002/adsc.201400356. (l) Wang, T.; Huang, L.; Shi, S.; Rudolph, M.; Hashmi, A. S. K. Synthesis of Highly Substituted N-(Furan-3-ylmethylene)Benzenesulfonamides by a Gold(I)-Catalyzed Oxidation/1,2-Alkynyl Migration/Cyclization Cascade. Chemistry. 2014, 20, 14868-14871. DOI: 10.1002/chem.201404229.
  • (a) Ueda, H.;Yamaguchi, M.; Kameya, H.; Sugimoto, K.; Tokuyama, H. Autotandem Catalysis: Synthesis of Pyrroles by Gold-catalyzed Cascade Reaction. Org. Lett. 2014, 16, 4948-4951. DOI: 10.1021/ol5024695. (b) Li, X.; Chen, M.; Xie, X.; Sun, N.; Li, S.; Liu, Y. Synthesis of Multiple-Substituted Pyrroles via Gold(I)-Catalyzed Hydroamination/Cyclization Cascade. Org. Lett. 2015, 17, 2984-2987. DOI: 10.1021/asc.orglett.5b01281. (c) Tokimizu, Y.; Wieteck, M.; Rudolph, M.; Oishi, S.; Fujii, N.; Hashmi, A. S. K.; Ohno, H. Dual Gold Catalysis: A Novel Synthesis of Bicyclic and Tricyclic Pyrroles from N-propargyl Ynamides. Org. Lett. 2015, 17, 604-607. DOI: 10.1021/ol503623m. (d) Lampke, L.; Fischer, T.; Bell, T.; Krause, W.; Rurack, K.; Krause, N. Gold-catalyzed Allene Cycloisomerization for Pyrrole Synthesis: Towards Highly Fluorinated BODIPY Dyes. Org. Biomol. Chem. 2015, 13, 3787-3791. DOI: 10.1039/C4OB02671C. (e) Saito, A.; Konishi,; Hanzawa, T. Synthesis of Pyrroles by Gold(I)-Catalyzed Amino-Claisen Rearrangement of N-propargyl Enaminone Derivatives. Org. Lett. 2010, 12, 372-374. DOI: 10.1021/ol902716n. (f) Hashmi, A. S. K.; Salathe, R.; Frey, W. Gold Catalysis: Selectivity Problems in Hydroarylations with Pyrroles. Eur. J. Org. Chem. 2007, 2007, 1648-1652. DOI: 10.1002/ejoc.200601062.
  • (a) Shen, C. H.; Li, L.; Zhang, W.; Liu, S.; Shu, S.; Xie, Y. E.; Yu, Y. F.; Ye, L. W. Gold-Catalyzed Tandem Cycloisomerization/Functionalization of in Situ Generated α-Oxo Gold Carbenes in Water. J. Org. Chem. 2014, 79, 9313-9318. DOI: 10.1021/jo501872h. (b) Matuda, Y.; Naoe, S.; Oishi, S.; Fujii, N.; Ohno, H. Formal [4+2] Reaction between 1,3-Diynes and Pyrroles: Gold(I)-Catalyzed Indole Synthesis by Double Hydroarylation. Chem. Eur. J. 2015, 21, 1463-1467. DOI: 10.1002/chem.201405903. (c) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Gold-Catalyzed C-H Annulation of Anthranils with Alkynes: A Facile, Flexible, and Atom-Economical Synthesis of Unprotected 7-Acylindoles. Angew. Chem. Int. Ed. Engl. 2016, 55, 794-797. DOI: 10.1002/anie.201508309. (d) Kaldas, S. J.; Cannillo, A.; McCallum, T.; Barriault, L. Indole Functionalization via Photoredox Gold Catalysis. Org. Lett. 2015, 17, 2864-2866. DOI: 10.1021/acs.orglett.5b01260. (e) Wang, T.; Shi, S.; Pflästerer, D.; Rettenmeier, E.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Synthesis of Polycyclic Indole Skeletons by a Gold(I)-Catalyzed Cascade Reaction. Chem. Eur. J. 2014, 20, 292-296. DOI: 10.1002/chem.201303539. (f) Hashmi, A. S. K.; Yang, W.; Rominger, F. Gold(I)-Catalyzed Rearrangement of 3-Silyloxy-1,5-Enynes: An Efficient Synthesis of Benzo[b]thiophenes, Dibenzothiophenes, Dibenzofurans, and Indole Derivatives. Chem. Eur. J. 2012, 18, 6576-6580. DOI: 10.1002/chem.201200314.
  • (a) He, W.; Li, C. W.; Zhang, L. An Efficient [2 + 2 + 1] Synthesis of 2,5-Disubstituted Oxazoles via Gold-catalyzed Intermolecular Alkyne Oxidation. J. Am. Chem. Soc. 2011, 133, 8482-8485. DOI: 10.1021/ja2029188. (b) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Intermolecular and Selective Synthesis of 2,4,5-Trisubstituted Oxazoles by a Gold-Catalyzed Formal [3 + 2] Cycloaddition. Angew. Chem. Int. Ed. 2011, 50, 8931-8935. DOI: 10.1002/anie.201103563. (c) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. Tempering the Reactivities of Postulated α-Oxo Gold Carbenes Using Bidentate Ligands: Implication of Tricoordinated Gold Intermediates and the Development of an Expedient Bimolecular Assembly of 2,4-disubstituted Oxazoles. J. Am. Chem. Soc. 2012, 134, 17412-17415. DOI: 10.1021/ja307948m. (d) Peng, H.; Akhmedov, N. G.; Liang, Y.-F.; Jiao, N.; Shi, X. Synergistic Gold and Iron Dual Catalysis: Preferred Radical Addition Toward Vinyl-Gold Intermediate over Alkene. J. Am. Chem. Soc. 2015, 137, 8912-8915. DOI: 10.1021/jacs.5b05415. (e) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Gold Catalysis: Mild Conditions for the Synthesis of Oxazoles from N-Propargylcarboxamides and Mechanistic Aspects. Org. Lett. 2004, 6, 4391-4394. DOI: 10.1021/ol0480067. (f) Mai, S.; Rao, C.; Chen, M.; Su, T.; Du, J.; Song, Q. Merging Gold Catalysis, Organocatalytic Oxidation, and Lewis Acid Catalysis for Chemodivergent Synthesis of Functionalized Oxazoles from N-Propargylamides. Chem. Commun. (Camb.) 2017, 53, 10366-10369. DOI: 10.1039/C7CC05746F. (g) Hashmi, A. S. K.; Rudolph, M.; Schymura, S.; Visus, J.; Frey, W. Gold Catalysis: Alkylideneoxazolines and -Oxazoles from Intramolecular Hydroamination of an Alkyne by a Trichloroacetimidate. Eur. J. Org. Chem. 2006, 2006, 4905-4909. DOI: 10.1002/ejoc.200600572. (h) Weyrauch, J. P.; Hashmi, A. S. K.; Schuster, A.; Hengst, T.; Schetter, S.; Littmann, A.; Rudolph, M.; Hamzic, M.; Visus, J.; Rominger, F.; et al. Cyclization of Propargylic Amides: Mild Access to Oxazole Derivatives. Chem. Eur. J. 2010, 16, 956-963. DOI: 10.1002/chem.200902472. (i) Querard, P., Girard, S. A.; Uhlig, N.; Li, C.-J. Gold-Catalyzed Tandem Reactions of Amide-Aldehyde-Alkyne Coupling and Cyclization-Synthesis of 2,4,5-Trisubstituted Oxazoles. Chem. Sci. 2015, 6, 7332-7335. DOI: 10.1039/C5SC02933C. (j) Hashmi, A. S. K.; Littmann, A. Gold Catalysis: One-Pot Alkylideneoxazoline Synthesis/Alder-ene Reaction. Chem. Asian J. 2012, 7, 1435-1442. DOI: 10.1002/asia.201200046. (k) Reddy, R. J.; Ball-Jones, M. P.; Davies, P. W. Alkynyl Thioethers in Gold-Catalyzed Annulations to Form Oxazoles. Angew. Chem. Int. Ed. Engl. 2017, 56, 13310-13313. DOI: 10.1002/anie.201706850. (l) Hashmi, A. S. K.; Blanco Jaimes, M. C.; Schuster, A. M.; Rominger, F. From Propargylic Amides to Functionalized Oxazoles: Domino Gold Catalysis/Oxidation by Dioxygen. J. Org. Chem. 2012, 77, 6394-6409. DOI: 10.1021/jo301288w. (m) Bay, S.; Baumeister, T.; Hashmi, A. S. K.; Roder, T. Safe and Fast Flow Synthesis of Functionalized Oxazoles with Molecular Oxygen in a Microstructured Reactor. Org. Process Res. Dev. 2016, 20, 1297-1304. DOI: 10.1021/acs.oprd.6b00118. (n) Nalivela, K. S.; Rudolph, M.; Baeissa, E. S.; Alhogbi, B. G.; Mkhalid, I. A. I.; Hashmi, A. S. K. Sequential Au/Cu Catalysis: A Two Catalyst One-Pot Protocol for the Enantioselective Synthesis of Oxazole α-Hydroxy Esters via Intramolecular Cyclization/Intermolecular Alder-Ene Reaction. Adv. Synth. Catal. 2018, 360, 2183-2190. DOI: 10.1002/adsc.201800246.
  • (a) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Gold-Catalyzed Synthesis of Quinolines from Propargyl Silyl Ethers and Anthranils through the Umpolung of a Gold Carbene Carbon. Angew. Chem. Int. Ed. Engl. 2016, 55, 12688-12692. DOI: 10.1002/anie.201606043. (b) Gronnier, C.; Boissonnat, G.; Gagosz, F. Au-Catalyzed Formation of Functionalized Quinolines from 2-Alkynyl Arylazide Derivatives. Org. Lett. 2013, 15, 4234-4237. DOI: 10.1021/ol4019634. (c) Cai, S.; Zeng, J.; Bai, Y.; Liu, X.-W. Access to Quinolines Through Gold-Catalyzed Intermolecular Cycloaddition of 2-Aminoaryl Carbonyls and Internal Alkynes. J. Org. Chem. 2012, 77, 801-807. DOI: 10.1021/jo202281x. (d) Arcadi, A.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. A New Green Approach to the Friedlander Synthesis of Quinolines. Synlett. 2003, 203-206. DOI: 10.1055/s-2003-36798. (e) Zhao, X.; Song, X.; Jin, H.; Zeng, Z.; Wang, Q.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Gold-Catalyzed Intermolecular [4 + 2] Annulation of 2-Ethynylanilines with Ynamides: An Access to Substituted 2-Aminoquinolines. Adv. Synth. Catal. 2018, 360, 2720-2726. DOI: 10.1002/adsc.201800341. (f) Hashmi, A. S. K.; Rudolph, M.; Bats, J. W.; Frey, W.; Rominger, F.; Oeser, T. Gold-Catalyzed Synthesis of Chroman, Dihydrobenzofuran, Dihydroindole, and Tetrahydroquinoline Derivatives. Chem. Eur. J. 2008, 14, 6672-6678. DOI: 10.1002/chem.200800210.
  • (a) Blanco Jaimes, M. C.; Bohling, C. R. N.; Serrano-Becerra, J. M.; Hashmi, A. S. K. Highly Active Mononuclear NAC-Gold(I) Catalysts. Angew. Chem. Int. Ed. Engl. 2013, 52, 7963-7966. DOI: 10.1002/anie.201210351. (b) Blanco Jaimes, M. C.; Rominger, F.; Pereira, M. M.; Carrilho, R. M. B.; Carabineiro, S. A. C.; Hashmi, A. S. K. Highly Active Phosphite Gold(I) Catalysts for Intramolecular Hydroalkoxylation, enyne Cyclization and Furanyne Cyclization. Chem. Commun. (Camb.) 2014, 50, 4937-4940. DOI: 10.1039/C4CC00839A. (c) Hashmi, A. S. K. Chemistry. Sub-nanosized Gold Catalysts. Science 2012, 338, 1434-1434. DOI: 10.1126/science.1231901.
  • (a) Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Navarro, M. T.; Sanchez, F. Synthesis of Bifunctional Au-Sn Organic-inorganic Catalysts for Acid-free Hydroamination Reactions. Chem. Commun. 2008, 6218-6220. DOI: 10.1039/B810310K. (b) Corma, A.; Gutierrez-Puebla, E.; Iglesias, M.; Monge, A.; Perez-Ferreras, S.; Sanchez, F. New Heterogenized Gold(I)-Heterocyclic Carbene Complexes as Reusable Catalysts in Hydrogenation and Cross-Coupling Reactions. Adv. Synth. Catal. 2006, 348, 1899-1907. DOI: 10.1002/adsc.200606163. (c) Villaverde, G.; Corma, A.; Iglesias, M.; Sanchez, F. Heterogenized Gold Complexes: Recoverable Catalysts for Multicomponent Reactions of Aldehydes, Terminal Alkynes, and Amines. ACS Catal. 2012, 2, 399-406. DOI: 10.1021/cs200601w. (d) Tsupova, S.; Cadu, A.; Carabineiro, S. A. C.; Rudolph, M.; Hashmi, A. S. K. Solid supported nitrogen acyclic carbene (SNAC) complexes of gold: Preparation and catalytic activity. J. Catal. 2017, 350, 97-102. DOI: 10.1016/j.jcat.2017.03.013. (e) Carrettin, S.; Blanco, M. C.; Corma, A.; Hashmi, A. S. K. Heterogeneous Gold-Catalysed Synthesis of Phenols. Adv. Synth. Catal. 2006, 348, 1283-1288. DOI: 10.1002/adsc.200606099.
  • Nie, Q.; Yi, F.; Huang, B.; Cai, M. Efficient Heterogeneous Gold(I)-Catalyzed Direct C(sp2)-C(sp) Bond Functionalization of Arylalkynes through a Nitrogenation Process to Amides. Adv. Synth. Catal. 2017, 359, 3968-3976. DOI: 10.1002/adsc.201700783.
  • Lempers, H. E. B.; Sheldon, R. A. The Stability of Chromium in CrAPO-5, CrAPO-11, and CrS-1 During Liquid Phase Oxidations. J. Catal. 1998, 175, 62-69. DOI: 10.1006/jcat.1998.1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.