Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 11
161
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of 2,6-di(1,8-naphthyridin-2-yl)pyridines functionalized at the 4-position: Building blocks for suitable metal complex-based dyes

, &
Pages 1396-1405 | Received 21 Nov 2018, Published online: 22 Apr 2019

References

  • Grätzel, M. Dye-Sensitized Solar Cells. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 4, 145–153. DOI: 10.1016/S1389-5567(03)00026-1.
  • (a) Grätzel, M. Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. J. Photochem. Photobiol. A: Chem. 2004, 164, 3–14. DOI: 10.1016/j.jphotochem.2004.02.023. (b) Klein, C.; Nazeeruddin, K. M.; Di Censo, D.; Liska, P.; Grätzel, M. Amphiphilic Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells. Inorg. Chem. 2004, 43, 4216–4226. DOI: 10.1021/ic049906m. (c) Koumura, N.; Wang, Z.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics. J. Am. Chem. Soc. 2006, 128, 14256–14257. DOI: 10.1021/ja0645640.
  • Nazeeruddin, K. M.; Péchy, P.; Renouard, T.; Zakeeruddin, M. S.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2 -Based Solar Cells. J. Am. Chem. Soc. 2001, 123, 1613–1624. DOI: 10.1021/ja003299u.
  • (a) Nazeeruddin, K. M.; Grätzel, M. Separation of Linkage Isomers of Trithiocyanato (4,4′,4″-tricarboxy-2,2′,6,2″-terpyridine)Ruthenium(II) by pH-Titration Method and their Application in Nanocrystalline TiO2-Based Solar Cells. J. Photochem. Photobiol. A: Chem. 2001, 145, 79–86. DOI: 10.1016/S1010-6030(01)00572-X. (b) Brewster, T. P.; Ding, W.; Schley, N. D.; Hazari, N.; Batista, V. S.; Robert, H.; Crabtree, R. H. Thiocyanate Linkage Isomerism in a Ruthenium Polypyridyl Complex. Inorg. Chem. 2011, 50, 11938–11946. DOI: 10.1021/ic200950e.
  • (a) Oyama, D.; Fukuda, A.; Yamanaka, T.; Takase, T. Facile and Selective Synthetic Approach for Ruthenium Complexes Utilizing a Molecular Sieve Effect in the Supporting Ligand. Inorganics. 2013, 1, 32–45. DOI: 10.3390/inorganics1010032. (b) Oyama, D.; Abe, R.; Takase, T. Coordination Chemistry of Mononuclear Ruthenium Complexes Bearing Versatile 1,8-Naphthyridine Units: Utilization of Specific Reaction Sites Constructed by the Secondary Coordination Sphere. Coord. Chem. Rev. 2018, 375, 424–433. DOI: 10.1016/j.ccr.2017.11.024.
  • (a) Oyama, D.; Yamanaka, T.; Abe, R.; Takase, T. Ruthenium Complexes Bearing a Tridentate Polypyridyl Ligand with Non-Coordinating Donor Atoms: Construction of a Specific Coordination Environment Involving Noncovalent Interactions. J. Organomet. Chem. 2017, 830, 167–174. DOI: 10.1016/j.jorganchem.2016.12.001. (b) Koizumi, T.; Tanaka, K. Synthesis, Chemical- and Electrochemical Properties of Ruthenium(II) Complexes Bearing 2,6-Bis(2-Naphthyridyl)Pyridine. Inorg. Chim. Acta. 2005, 358, 1999–2004. DOI: 10.1016/j.ica.2004.12.008.
  • (a) Silverman, M. B.; Wieghaus, A. K.; Schwartz, J. Comparative Properties of Siloxane vs. Phosphonate Monolayers on a Key Titanium Alloy. Langmuir. 2005, 21, 225–228. DOI: 10.1021/la048227l. (b) Pang, L. C.; Watkins, M.; Cabailh, G.; Ferrero, S.; L. T. Ngo, T. L.; Chen, Q.; Humphrey, S. D.; Shluger, L. A.; Thornton, G. Bonding of Methyl Phosphonate to TiO2 (110). J. Phys. Chem. C 2010, 114, 16983–16988. DOI: 10.1021/jp1018923. (c) Haga, M.; Kobayashi, K.; Terada, K. Fabrication and Functions of Surface Nanomaterials Based on Multilayered or Nanoarrayed Assembly of Metal Complexes. Coord. Chem. Rev. 2007, 251, 2688–2701. DOI: 10.1016/j.ccr.2007.03.022.
  • (a) Kay, A.; Graetzel, M. Artificial Photosynthesis. 1. Photosensitization of Titania Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins. J. Phys. Chem. 1993, 97, 6272–6277. DOI: 10.1021/j100125a029. (b) Hanson, K.; Brennaman, K. M.; Luo, H.; Glasson, K. R. C.; Concepcion, J. J.; Song, W.; Meyer, T. J. Photostability of Phosphonate-Derivatized, RuII Polypyridyl Complexes on Metal Oxide Surfaces. ACS Appl. Mater. Interfaces. 2012, 4, 1462–1469. DOI: 10.1021/am201717x.
  • (a) Kamegawa, T.; Seto, H.; Matsuura, S.; Yamashita, H. Preparation of Hydroxynaphthalene-Modified TiO2 via Formation of Surface Complexes and Their Applications in the Photocatalytic Reduction of Nitrobenzene under Visible-Light Irradiation. ACS Appl. Mater. Interfaces. 2012, 4, 6635–6639. DOI: 10.1021/am3017762. (b) Rice, R. C.; Ward, M. D.; Nazeeruddin, K. M.; Grätzel, M. Catechol as an Efficient Anchoring Group for Attachment of Ruthenium–Polypyridine Photosensitisers to Solar Cells Based on Nanocrystalline TiO2 Films. New J. Chem. 2000, 24, 651–652. DOI: 10.1039/b003823g.
  • (a) Tseng, H.-W.; Zong, R.; Muckerman, J. T.; Thummel, R. Mononuclear Ruthenium(II) Complexes That Catalyze Water Oxidation. Inorg. Chem. 2008, 47, 11763–11773. DOI: 10.1021/ic8014817. (b) Zong, R.; Thummel, R. P. A New Family of Ru Complexes for Water Oxidation. J. Am. Chem. Soc. 2005, 127, 12802–12803. DOI: 10.1021/ja054791m.
  • (a) Cheng, C.-C.; Yan, S.-J. Organic Reactions; John Wiley & Sons: New York, 1982; Vol. 28. (b) Caluwe, P.; Evans, G. Poly(1,8-Naphthyridines) and 1,9,10-Anthyridines: Model Systems for "Black Orlon" Macromolecules 1979, 12, 803–808. DOI: 10.1021/ma60071a002. (c) Thummel, R. P.; Lefoulon, F.; Cantu, D.; Mahadevan, R. Polyaza Cavity-Shaped Molecules. Annelated Derivatives of 2-(2′-Pyridyl)-1,8-Naphthyridine and 2,2′-bi-1,8-Naphthyridine. J. Org. Chem. 1984, 49, 2208–2212. DOI: 10.1021/jo00186a027. (d) Majewicz, T. G.; Caluwe, P. Facile Synthesis of 2-Aminonicotinaldehyde. J. Org. Chem. 1974, 39, 720–721. DOI: 10.1021/jo00919a033. (e) Hawes, E. M.; Wibberley, D. G. 1,8-Naphthyridines. Part II. Preparation and Some Reactions of 2-Substituted Derivatives. J. Chem. Soc, C 1967, 1564– 1568. DOI: 10.1039/j39670001564. (f) Gajardo, J.; Araya, J. C.; Moya, S. A.; Pardey, A. J.; Guerchais, V.; Bozec, H. L.; Aguirre, P. New Polynuclear Carbonyl Ruthenium(II) Complexes Derived from 1,8-Naphthyridine. Appl. Organometal. Chem. 2006, 20, 272–276. DOI: 10.1002/aoc.1021.
  • (a) Campos-Fernández, C. S.; Thomson, L. M.; Galán-Mascarós, J. R.; Ouyang, X.; Dunbar, K. R. Homologous Series of Redox-Active, Dinuclear Cations [M2(O2CCH3)2(Pynp)2]2+ (M = Mo, Ru, Rh) with the Bridging Ligand 2-(2-Pyridyl)-1,8-Naphthyridine (Pynp). Inorg. Chem. 2002, 41, 1523–1533. DOI: 10.1021/ic010996u. (b) Rivera, N. R.; Hsiao, Y.; Cowen, J. A.; McWilliams, C.; Armstrong, J.; Yasuda, N.; Hughes, D. L. Highly Efficient Synthesis of 2-Amino-3-Pyridinecarboxaldehyde. Synth. Commun. 2001, 31, 1573–1579. DOI: 10.1081/SCC-100104071.
  • (a) Fallahpour, R.-A.; Constable, E. C. Novel Synthesis of Substituted 4′-Hydroxy-2,2″,6′,2″-Terpyridines. J. Chem. Soc, Perkin Trans. 1997, 1, 2263–2264. DOI: 10.1039/a704295g. (b) Fallahpour, R.-A.; Neuburger, M.; Zehnder, M. Ruthenium(II) Complexes of Novel 4′-Ethoxy- and 4′-Hydroxy-5,5″-Dimethyl-2,2′:6′,2″-Terpyridines: X-ray Crystal Structures of 4′-Ethoxy-5,5″-Dimethyl-2,2″:6′,2″-Terpyridine and the Ruthenium(II) Complex of 4′-Ethoxy-5,5″-Dimethyl-2,2′:6′,2″-Terpyridine with 4′-Chloro-2,2′:6′,2″-Terpyridine. Polyhedron. 1999, 18, 2445–2454. DOI: 10.1016/S0277-5387(99)00147-3.
  • (a) Darmon, J. M.; Turner, Z. R.; Lobkovsky, E.; Chirik, P. J. Electronic Effects in 4-Substituted Bis(Imino)Pyridines and the Corresponding Reduced Iron Compounds. Organometallics. 2012, 31, 2275–2285. DOI: 10.1021/om201212m. (b) Lukeś, R.; Pergal, M. Homologues of Pyridine. II. Synthesis and Reactions of Some α,α'-Disubstituted Pyridines. Coll. Czech. Chem. Commun. 1959, 24, 36–45. DOI: 10.1135/cccc19590036. (c) Yamamoto, Y.; Ouchi, H.; Tanaka, T. Simple and Mild Method for Preparation of α-Pyridinecarboxylates and α-Pyridyl Ketones via Trimethylstannyl Derivatives. Chem. Pharm. Bull. 1995, 43, 1028–1030. DOI: 10.1248/cpb.43.1028. (d) Jiang, Q.; van Plew, D.; Murtuza, S.; Zhang, X. Synthesis of (1R,1R′)-2,6-Bis[1-(Diphenylphosphino)Ethyl]Pyridine and Its Application in Asymmetric Transfer Hydrogenation. Tetrahedron Lett. 1996, 37, 797–800. DOI: 10.1016/0040-4039(95)02298-8.
  • Therrien, J. A.; Wolf, M. O. The Influence of Para Substituents in Bis(N-Heterocyclic Carbene) Palladium Pincer Complexes for Electrocatalytic CO2 Reduction. Inorg. Chem. 2017, 56, 1161–1172. DOI: 10.1021/acs.inorgchem.6b02213.
  • Su, B.; Zhao, J.; Cui, Y.; Liang, Y.; Sun, W. Controlled Synthesis of 2‐Acetyl‐6‐Carbethoxypyridine and 2,6‐Diacetylpyridine from 2,6‐Dimethylpyridine. Synth. Commun. 2005, 35, 2317–2324. DOI: 10.1080/00397910500186995.
  • (a) Takase, T.; Soga, Y.; Oyama, D. 4′-(3,4-Dimethoxyphenyl)-2,2′:6′,2″-Terpyridine. IUCrData. 2016, 1, x160950. DOI: 10.1107/S2414314616009500. (b) Storrier, G. D.; Colbran, S. B.; Craig, D. C. Transition-Metal Complexes of Terpyridine Ligands with Hydroquinone or Quinone Substituents . J. Chem. Soc, Dalton Trans. 1998, 1351–1364. DOI: 10.1039/a709117f.
  • (a) Abe, R.; Takase, T.; Oyama, D. 2-(Pyridin-2-yl)-1,8-Naphthyridine. IUCrData 2017, 2, x171221. DOI: 10.1107/S2414314617012214. (b) Sinha, A.; Rahaman, S. M. W.; Sarkar, M.; Saha, B.; Daw, P.; Bera, J. K. Multifaceted Coordination of Naphthyridine − Functionalized N-Heterocyclic Carbene: A Novel “Ir(CN)(CC)” Compound and Its Evaluation as Transfer Hydrogenation Catalyst. Inorg. Chem. 2009, 48, 11114–11122. DOI: 10.1021/ic901502n.
  • Waghmode, S. B.; Mahale, G.; Patil, V. P.; Renalson, K.; Singh, D. Efficient Method for Demethylation of Aryl Methyl Ether Using Aliquat-336. Synth. Commun. 2013, 43, 3272–3280. DOI: 10.1080/00397911.2013.772201.
  • Alessio, E.; Mestroni, G.; Nardin, G.; Attia, W. M.; Calligaris, M.; Sava, G.; Zorzet, S. Cis- and Trans-Dihalotetrakis(Dimethyl Sulfoxide)Ruthenium(II) Complexes (RuX2(DMSO)4; X = Cl, Br): Synthesis, Structure, and Antitumor Activity. Inorg. Chem. 1988, 27, 4099–4106. DOI: 10.1021/ic00296a006.
  • Oyama, D.; Yamanaka, T.; Fukuda, A.; Takase, T. Modulation of Intramolecular Hydrogen-Bonding Strength by Axial Ligands in Ruthenium(II) Complexes. Chem. Lett. 2013, 42, 1554–1555. DOI: 10.1246/cl.130805.
  • (a) Kono, T.; Masaki, N.; Nishikawa, M.; Tamura, R.; Matsuzaki, H.; Kimura, M.; Mori, S. Interfacial Charge Transfer in Dye-Sensitized Solar Cells Using SCN-Free Terpyridine-Coordinated Ru Complex Dye and Co Complex Redox Couples. ACS Appl. Mater. Interfaces. 2016, 8, 16677–16683. DOI: 10.1021/acsami.6b03712. (b) Hagfeldt, A.; Graetzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995, 95, 49–68. DOI: 10.1021/cr00033a003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.