Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 11
541
Views
2
CrossRef citations to date
0
Altmetric
Articles

The succinct synthesis of AT13387, a clinically relevant Hsp90 inhibitor

, , & ORCID Icon
Pages 1436-1443 | Received 11 Jan 2019, Published online: 23 Apr 2019

References

  • Hartl, F. U.; Bracher, A.; Hayer-Hartl, M. Molecular Chaperones in Protein Folding and Proteostasis. Nature. 2011, 475, 324–332. DOI: 10.1038/nature10317.
  • Hartl, F. U.; Hayer-Hartl, M. Molecular Chaperones in the Cytosol: From Nascent Chain to Folded Protein. Science. 2002, 295, 1852–1858. DOI: 10.1126/science.1068408.
  • Gershenson, A.; Gierasch, L. M. Protein Folding in the Cell: Challenges and Progress. Curr. Opin. Struct. Biol. 2011, 21, 32–41. DOI: 10.1016/j.sbi.2010.11.001.
  • Kim, Y. E.; Hipp, M. S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F. U. Molecular Chaperone Functions in Protein Folding and Proteostasis. Annu. Rev. Biochem. 2013, 82, 323–355. DOI: 10.1146/annurev-biochem-060208-092442.
  • Jianming, W.; Tuoen, L.; Zechary, R.; Qibing, M.; Xiukun, L.; Shousong, C. Heat Shock Proteins and Cancer. Trends Pharmacol. Sci. 2017, 38, 226–256.
  • Jego, G.; Hazoumé, A.; Seigneuric, R.; Garrido, C. Targeting Heat Shock Proteins in Cancer. Cancer Lett. 2013, 332, 275–285. DOI: 10.1016/j.canlet.2010.10.014.
  • Brehme, M.; Voisine, C.; Rolland, T.; Wachi, S.; Soper, J. H.; Zhu, Y.; Orton, K.; Villella, A.; Garza, D.; Vidal, M.; et al. A Chaperome Subnetwork Safeguards Proteostasis in Aging and Neurodegenerative Disease. Cell Rep. 2014, 9, 1135–1150. DOI: 10.1016/j.celrep.2014.09.042.
  • Kalia, S. K.; Kalia, L. V.; McLean, P. J. Molecular Chaperones as Rational Drug Targets for Parkinson's Disease Therapeutics. CNS Neurol. Disord. Drug Targets. 2010, 9, 741–753. DOI: 10.2174/187152710793237386.
  • Karagöz, G. E.; Duarte, A. M. S.; Akoury, E.; Ippel, H.; Biernat, J.; Morán Luengo, T.; Radli, M.; Didenko, T.; Nordhues, B. A.; Veprintsev, D. B.; et al. Hsp90-Tau Complex Reveals Molecular Basis for Specificity in Chaperone Action. Cell. 2014, 156, 963–974. DOI: 10.1016/j.cell.2014.01.037.
  • Pratt, W. B.; Gestwicki, J. E.; Osawa, Y.; Lieberman, A. P. Targeting Hsp90/Hsp70-Based Protein Quality Control for Treatment of Adult Onset Neurodegenerative Diseases. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 353–371. DOI: 10.1146/annurev-pharmtox-010814-124332.
  • Tukaj, S.; Węgrzyn, G. Anti-Hsp90 Therapy in Autoimmune and Inflammatory Diseases: A Review of Preclinical Studies. Cell Stress Chaperones. 2016, 21, 213–218. DOI: 10.1007/s12192-016-0670-z.
  • Khandelwal, A.; Crowley, V. M.; Blagg, B. S. J. Natural Product Inspired N-Terminal Hsp90 Inhibitors: From Bench to Bedside? Med. Res. Rev. 2016, 36, 92–118. DOI: 10.1002/med.21351.
  • Neckers, L.; Workman, P. Hsp90 Molecular Chaperone Inhibitors: Are we There yet? Clin. Cancer Res. 2012, 18, 64–76. DOI: 10.1158/1078-0432.CCR-11-1000.
  • Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Targeting the Dynamic HSP90 Complex in Cancer. Nat. Rev. Cancer. 2010, 10, 537–549. DOI: 10.1038/nrc2887.
  • Taipale, M.; Jarosz, D. F.; Lindquist, S. HSP90 at the Hub of Protein Homeostasis: emerging Mechanistic Insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 515–528. DOI: 10.1038/nrm2918.
  • Schopf, F. H.; Biebl, M. M.; Buchner, J. The HSP90 Chaperone Machinery. Nat. Rev. Mol. Cell Biol. 2017, 18, 345–360. DOI: 10.1038/nrm.2017.20.
  • Pratt, W. B. The Role of Heat Shock Proteins in Regulating the Function, Folding, and Trafficking of the Glucocorticoid Receptor. J. Biol. Chem. 1993, 268, 21455–21458.
  • Csermely, P.; Schnaider, T.; SoTi, C.; Prohászka, Z.; Nardai, G. The 90-kDa Molecular Chaperone Family: Structure, Function, and Clinical Applications. A Comprehensive Review. Pharmacol Ther. 1998, 79, 129–168. DOI: 10.1016/S0163-7258(98)00013-8.
  • Da Silva, V. C. H.; Ramos, C. H. I. The Network Interaction of the Human Cytosolic 90 kDa Heat Shock Protein Hsp90: A Target for Cancer Therapeutics. J. Proteomics. 2012, 75, 2790–2802. DOI: 10.1016/j.jprot.2011.12.028.
  • Holzbeierlein, J.; Windsperger, A.; Vielhauer, G. Hsp90: A Drug Target? Curr. Oncol. Rep. 2010, 12, 95–101. DOI: 10.1007/s11912-010-0086-3.
  • Wawrzynow, B.; Zylicz, A.; Zylicz, M. Chaperoning the Guardian of the Genome. The Two-Faced Role of Molecular Chaperones in p53 Tumor Suppressor Action. Biochim. Biophys. Acta. Rev. Cancer. 2018, 1869, 161–174. DOI: 10.1016/j.bbcan.2017.12.004.
  • Garg, G.; Khandelwal, A.; Blagg, B. S. J. Anticancer Inhibitors of Hsp90 Function: Beyond the Usual Suspects. Adv. Cancer Res. 2016, 129, 51–88. DOI: 10.1016/bs.acr.2015.12.001.
  • Soga, S.; Akinaga, S.; Shiotsu, Y. Hsp90 Inhibitors as anti-Cancer Agents, from Basic Discoveries to Clinical Development. Curr. Pharm. Des. 2013, 19, 366–376. DOI: 10.2174/138161213804143617.
  • Hong, D. S.; Banerji, U.; Tavana, B.; George, G. C.; Aaron, J.; Kurzrock, R. Targeting the Molecular Chaperone Heat Shock Protein 90 (HSP90): Lessons Learned and Future Directions. Cancer. Treat. Rev. 2013, 39, 375–387. DOI: 10.1016/j.ctrv.2012.10.001.
  • Khandelwal, A.; Kent, C. N.; Balch, M.; Peng, S.; Mishra, S. J.; Deng, J.; Day, V. W.; Liu, W.; Subramanian, C.; Cohen, M.; et al. Structure-Guided Design of an Hsp90β N-Terminal Isoform-Selective Inhibitor. Nat. Commun. 2018, 9, 425. DOI: 10.1038/s41467-017-02013-1.
  • Byrd, K. M.; Kent, C. N.; Blagg, B. S. J. Synthesis and Biological Evaluation of Stilbene Analogues as Hsp90 C‐Terminal Inhibitors. ChemMedChem. 2017, 12, 2022–2029. DOI: 10.1002/cmdc.201700630.
  • Woodhead, A. J.; Angove, H.; Carr, M. G.; Chessari, G.; Congreve, M.; Coyle, J. E.; Cosme, J.; Graham, B.; Day, P. J.; Downham, R.; et al. Discovery of (2, 4-Dihydroxy-5-Isopropylphenyl)-[5-(4-Methylpiperazin-1-Ylmethyl)-1, 3-Dihydroisoindol-2-yl] Methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design. J. Med. Chem. 2010, 53, 5956–5969. DOI: 10.1021/jm100060b.
  • Shapiro, G. I.; Kwak, E.; Dezube, B. J.; Yule, M.; Ayrton, J.; Lyons, J.; Mahadevan, D. First-in-Human Phase I Dose Escalation Study of a Second-Generation Non-Ansamycin HSP90 Inhibitor, AT13387, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2015, 21, 87–97. DOI: 10.1158/1078-0432.CCR-14-0979.
  • Murray, C. W.; Carr, M. G.; Callaghan, O.; Chessari, G.; Congreve, M.; Cowan, S.; Coyle, J. E.; Downham, R.; Figueroa, E.; Frederickson, M.; et al. Fragment-Based Drug Discovery Applied to Hsp90. Discovery of Two Lead Series with High Ligand Efficiency. J. Med. Chem. 2010, 53, 5942–5955. DOI: 10.1021/jm100059d.
  • Patel, B. H.; Barrett, A. G. M. Total Synthesis of Resorcinol Amide Hsp90 Inhibitor AT13387. J. Org. Chem. 2012, 77, 11296–11301. DOI: 10.1021/jo302406w.
  • Liang, C.; Gu, L.; Yang, Y.; Chen, X. Alternate Synthesis of HSP90 Inhibitor AT13387. Synth. Commun. 2014, 44, 2416–2425. DOI: 10.1080/00397911.2014.902068.
  • Teshima, T.; Matsumoto, T.; Wakamiya, T.; Shiba, T.; Aramaki, Y.; Nakajima, T.; Kawai, N. Total Synthesis of Nstx-3, Spider Toxin of Nephila Maculate. Tetrahedron. 1991, 47, 3305–3312. DOI: 10.1016/S0040-4020(01)86395-X.
  • Gallagher, N. J.; Murray, C.W.; Lyons, J. F.; Yule, S. M.; Thompson, N. T. Pharmaceutical combinations. WO Patent WO2008/44041, A1, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.