Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 14
258
Views
7
CrossRef citations to date
0
Altmetric
Articles

Gluconic acid promoted cascade reactions of 2-phenylimidazo[1,2-a] pyridine-3-carbaldehyde with cyclohexane-1,3-dione to create novel fused bisheterocycles

, , &
Pages 1836-1846 | Received 14 Mar 2019, Published online: 06 May 2019

References

  • Clarke, C. J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J. P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. DOI: 10.1021/acs.chemrev.7b00571.
  • García-Álvarez, J. Deep Eutectic Solvents: Environmentally-Friendly Media for Metal-Catalyzed Organic Reactions. Green Tech. Environ. 2014, 1186, 37–53. DOI: 10.1021/bk-2014-1186.ch003.
  • Mak, K. K.; Siu, J.; Lai, Y.; Chan, P-k. Mannich Reactions in Room Temperature Ionic Liquids (RTILs): An Advanced Undergraduate Project of Green Chemistry and Structural Elucidation. J. Chem. Educ. 2006, 83, 943. DOI: 10.1021/ed083p943.
  • Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green Solvents for Green Technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. DOI: 10.1002/jctb.4668.
  • Pereira, C. S.; Silva, V. M.; Rodrigues, A. E. Ethyl Lactate as a Solvent: properties, Applications and Production Processes–A Review. Green Chem. 2011, 13, 2658–2671. DOI: 10.1039/c1gc15523g.
  • Pace, V.; Hoyos, P.; Castoldi, L.; Dominguez de Maria, P.; Alcantara, A. R. 2‐Methyltetrahydrofuran (2‐MeTHF): A Biomass‐Derived Solvent with Broad Application in Organic Chemistry. ChemSusChem. 2012, 5, 1369–1379. DOI: 10.1002/cssc.201100780.
  • Zhou, B.; Yang, J.; Li, M.; Gu, Y. Gluconic Acid Aqueous Solution as a Sustainable and Recyclable Promoting Medium for Organic Reactions. Green Chem. 2011, 13, 2204–2211. DOI: 10.1039/c1gc15411g.
  • Li, B.-L.; Li, P.-H.; Fang, X.-N.; Li, C.-X.; Sun, J.-L.; Mo, L.-P.; Zhang, Z.-H. One-Pot Four-Component Synthesis of Highly Substituted Pyrroles in Gluconic Acid Aqueous Solution. Tetrahedron. 2013, 69, 7011–7018. DOI: 10.1016/j.tet.2013.06.049.
  • Yang, J.; Zhou, B.; Li, M.; Gu, Y. Gluconic Acid Aqueous Solution: A Task-Specific Bio-Based Solvent for Ring-Opening Reactions of Dihydropyrans. Tetrahedron. 2013, 69, 1057–1064. DOI: 10.1016/j.tet.2012.11.076.
  • Guo, R.-Y.; Wang, P.; Wang, G.-D.; Mo, L.-P.; Zhang, Z.-H. One-Pot Three-Component Synthesis of Functionalized Spirooxindoles in Gluconic Acid Aqueous Solution. Tetrahedron. 2013, 69, 2056–2061. DOI: 10.1016/j.tet.2012.12.081.
  • Mata, J. A.; Poyatos, M.; Peris, E. Structural and Catalytic Properties of Chelating Bis-and tris-N-Heterocyclic Carbenes. Coord. Chem. Rev. 2007, 251, 841–859. DOI: 10.1016/j.ccr.2006.06.008.
  • VaňKová, B.; Hlaváč, J.; Soural, M.; Solid-Phase Synthesis of Highly Diverse Purine-Hydroxyquinolinone Bisheterocycles. J. Comb. Chem. 2010, 12, 890–894. DOI: 10.1021/cc100132z.
  • Kaya, M.; Basar, E.; Colak, F. Synthesis and Antimicrobial Activity of Some Bisoctahydroxanthene-1, 8-Dione Derivatives. Med. Chem. Res. 2011, 20, 1214–1219. DOI: 10.1007/s00044-010-9459-2.
  • Patil, V. S.; Nandre, K. P.; Ghosh, S.; Rao, V. J.; Chopade, B. A.; Sridhar, B.; Bhosale, S. V.; Bhosale, S. V. Synthesis, Crystal Structure and Antidiabetic Activity of Substituted (E)-3-(Benzo [d] Thiazol-2-Ylamino) Phenylprop-2-en-1-One. Eur. J. Med. Chem. 2013, 59, 304–309. DOI: 10.1016/j.ejmech.2012.11.020.
  • Shafi, S.; Alam, M. M.; Mulakayala, N.; Mulakayala, C.; Vanaja, G.; Kalle, A. M.; Pallu, R.; Alam, M. Synthesis of Novel 2-Mercapto Benzothiazole and 1, 2, 3-Triazole Based Bis-Heterocycles: Their Anti-Inflammatory and Anti-Nociceptive Activities. Eur. J. Med. Chem. 2012, 49, 324–333. DOI: 10.1016/j.ejmech.2012.01.032.
  • Shafi, S.; Singh, S.; Haider, S.; Mahendhar Reddy, D.; Alam, M.; Narayana Swamy, G.; Kumar, H. Synthesis of Triazole and Isoxazole Based Novel Unsymmetrical Bis‐Heterocycles. J. Heterocyclic Chem. 2013, 50, 361–365. DOI: 10.1002/jhet.1587.
  • Poupelin, J. P.; Saint‐Ruf, G.; Foussard‐Blanpin, O.; Narcisse, G.; Uchida‐Ernouf, G.; Lacroix, R. Synthesis and Antiinflammatory Properties of Bis (2‐Hydroxy‐1‐Naphthyl) Methane Derivatives. I. Monosubstituted Derivatives. Chem. Inform. 1978, 13, 67–71. DOI: 10.1002/chin.197825154.
  • Mulakayala, N.; Murthy, P. V. N. S.; Rambabu, D.; Aeluri, M.; Adepu, R.; Krishna, G. R.; Reddy, C. M.; Prasad, K. R. S.; Chaitanya, M.; Kumar, C. S.; et al. Catalysis by Molecular Iodine: A Rapid Synthesis of 1, 8-Dioxo-Octahydroxanthenes and Their Evaluation as Potential Anticancer Agents. Bioorg. Med. Chem. Lett. 2012, 22, 2186–2191. DOI: 10.1016/j.bmcl.2012.01.126.
  • Na, Y. Recent Cancer Drug Development with Xanthone Structures. J. Pharm. Pharmacol. 2009, 61, 707–712. DOI: 10.1211/jpp/61.06.0002.
  • Lambert, R.; Martin, J.; Merrett, J.; Parkes, K.; Thomas, G. PCT Int. Appl. WO 9706178. Chemical Abstract, 1997, 126, 212377.
  • Zelefack, F.; Guilet, D.; Fabre, N.; Bayet, C.; Chevalley, S.; Ngouela, S.; Lenta, B. N.; Valentin, A.; Tsamo, E.; Dijoux-Franca, M.-G. Cytotoxic and Antiplasmodial Xanthones from Pentadesma Butyracea. J. Nat. Prod. 2009, 72, 954–957. DOI: 10.1021/np8005953.
  • Wang, L.-W.; Kang, J.-J.; Chen, J.; Teng, C.-M.; Lin, C.-N. Antihypertensive and Vasorelaxing Activities of Synthetic Xanthone Derivatives. Bioorg. Med. Chem. Lett. 2002, 10, 567–572. DOI: 10.1016/S0968-0896(01)00315-7.
  • Wang, H.; Lu, L.; Zhu, S.; Li, Y.; Cai, W. The Phototoxicity of Xanthene Derivatives against Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae. Curr. Microbiol. 2006, 52, 1–5. DOI: 10.1007/s00284-005-0040-z.
  • Naya, A.; Ishikawa, M.; Matsuda, K.; Ohwaki, K.; Saeki, T.; Noguchi, K.; Ohtake, N. Structure–Activity Relationships of Xanthene Carboxamides, Novel CCR1 Receptor Antagonists. Bioorg. Med. Chem. Lett. 2003, 11, 875–884. DOI: 10.1016/S0968-0896(02)00559-X.
  • Nisar, M.; Ali, I.; Shah, M. R.; Badshah, A.; Qayum, M.; Khan, H.; Khan, I.; Ali, S. Amberlite IR-120H as a Recyclable Catalyst for the Synthesis of 1, 8-Dioxo-Octahydroxanthene Analogs and Their Evaluation as Potential Leishmanicidal Agents. RSC Adv. 2013, 3, 21753–21758. DOI: 10.1039/c3ra43506g.
  • Khurana, J. M.; Chaudhary, A.; Lumb, A.; Nand, B. Efficient One-Pot Syntheses of Dibenzo [a, i] Xanthene-Diones and Evaluation of Their Antioxidant Activity. Can. J. Chem. 2012, 90, 739–746. DOI: 10.1139/v2012-033.
  • Seca, A. M.; Leal, S. B.; Pinto, D. C.; Barreto, M. C.; Silva, A. Xanthenedione Derivatives, New Promising Antioxidant and Acetylcholinesterase Inhibitor Agents. Molecules. 2014, 19, 8317–8333. DOI: 10.3390/molecules19068317.
  • Hilderbrand, S. A.; Weissleder, R. One-Pot Synthesis of New Symmetric and Asymmetric Xanthene Dyes. Tetrahedron Lett. 2007, 48, 4383–4385. DOI: 10.1016/j.tetlet.2007.04.088.
  • Fleming, G.; Knight, A. W. E.; Morris, J.; Morrison, R.; Robinson, G. Picosecond Fluorescence Studies of Xanthene Dyes. J. Am. Chem. Soc. 1977, 99, 4306–4311. DOI: 10.1021/ja00455a017.
  • Ahmad, M.; King, T. A.; Ko, D.-K.; Cha, B. H.; Lee, J. Performance and Photostability of Xanthene and Pyrromethene Laser Dyes in Sol-Gel Phases. J. Phys. D Appl. Phys. 2002, 35, 1473. DOI: 10.1088/0022-3727/35/13/303.
  • Chantarasriwong, O.; Althufairi, B. D.; Checchia, N. J.; Theodorakis, E. A. Caged Garcinia Xanthones: Synthetic Studies and Pharmacophore Evaluation. Studies Natural Prod. Chem. 2018, 58, 93–131. DOI: 10.1016/B978-0-444-64056-7.00004-0.
  • Azebaze, A. G. B.; Meyer, M.; Valentin, A.; Nguemfo, E. L.; Fomum, Z. T.; Nkengfack, A. E. Prenylated Xanthone Derivatives with Antiplasmodial Activity from Allanblackia Monticola S TANER LC. Chem. Pharm. Bull. 2006, 54, 111–113. DOI: 10.1248/cpb.54.111.
  • Gao, X.-M.; Yu, T.; Lai, F. S. F.; Zhou, Y.; Liu, X.; Qiao, C.-F.; Song, J.-Z.; Chen, S.-L.; Luo, K. Q.; Xu, H.-X. Identification and Evaluation of Apoptotic Compounds from Garcinia Paucinervis. Bioorg. Med. Chem. 2010, 18, 4957–4964. DOI: 10.1016/j.bmc.2010.06.014.
  • Padhi, S.; Masi, M.; Cimmino, A.; Tuzi, A.; Jena, S.; Tayung, K.; Evidente, A. Funiculosone, a Substituted Dihydroxanthene-1, 9-Dione with Two of Its Analogues Produced by an Endolichenic Fungus Talaromyces Funiculosus and Their Antimicrobial Activity. Phytochem. 2019, 157, 175–183. DOI: 10.1016/j.phytochem.2018.10.031.
  • Sharma, A.; Kalyani, I. S.; Fatima, A. Bio-Based Material as Medium, Mild and Reusable Catalyst for Paal–Knorr Pyrrole Synthesis with and without Ultrasonic Irradiation. Lett. Org. Chem. 2018, 15, 226–232.
  • Thakur, A.; Sharma, A.; Sharma, A. Efficient Synthesis of Xanthenedione Derivatives Using Cesium Salt of Phosphotungstic Acid as a Heterogeneous and Reusable Catalyst in Water. Synth. Commun. 2016, 46, 1766–1771. DOI: 10.1080/00397911.2016.1226340.
  • Ndikuryayo, F.; Kang, W.-M.; Wu, F.-X.; Yang, W.-C.; Yang, G.-F. Hydrophobicity-Oriented Drug Design (HODD) of New Human 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. Eur. J. Med. Chem 2019, 166, 22–31. DOI: 10.1016/j.ejmech.2019.01.032.
  • Wang, D.-W.; Lin, H.-Y.; Cao, R.-J.; Yang, S.-G.; Chen, Q.; Hao, G.-F.; Yang, W.-C.; Yang, G.-F. Synthesis and Herbicidal Evaluation of Triketone-Containing Quinazoline-2, 4-Diones. J. Agric. Food Chem. 2014, 62, 11786–11796. DOI: 10.1021/jf5048089.
  • Louie, T.; Goodman, C. D.; Holloway, G. A.; McFadden, G. I.; Mollard, V.; Watson, K. G. Dimeric Cyclohexane-1, 3-Dione Oximes Inhibit Wheat acetyl-CoA Carboxylase and Show anti-Malarial Activity. Bioorg. Med. Chem. Lett. 2010, 20, 4611–4613. DOI: 10.1016/j.bmcl.2010.06.007.
  • Watson, K. G. Cyclohexane-1, 3-Dione Oxime Ether Grass-Specific Herbicides and the Discovery of Butroxydim1. Aust. J. Chem. 2011, 64, 367–372. DOI: 10.1071/CH10366.
  • Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo[1,2-a]pyridines: a decade update. Chem. Commun. (Camb). 2015, 51, 1555–1575. DOI: 10.1039/c4cc08495k.
  • Kamal, A.; Reddy, J. S.; Ramaiah, M. J.; Dastagiri, D.; Bharathi, E. V.; Sagar, M. V. P.; Pushpavalli, S.; Ray, P.; Pal-Bhadra, M. Design, Synthesis and Biological Evaluation of Imidazopyridine/Pyrimidine-Chalcone Derivatives as Potential Anticancer Agents. Med. Chem. Commun. 2010, 1, 355–360. DOI: 10.1039/c0md00116c.
  • Deep, A.; Kaur Bhatia, R.; Kaur, R.; Kumar, S.; Kumar Jain, U.; Singh, H.; Batra, S.; Kaushik, D.; Kishore Deb, P. Imidazo, [1,2-a] Pyridine Scaffold as Prospective Therapeutic Agents. CTMC. 2017, 17, 238–250. DOI: 10.2174/1568026616666160530153233.
  • Azimi, S.; Zonouzi, A.; Firuzi, O.; Iraji, A.; Saeedi, M.; Mahdavi, M.; Edraki, N. Discovery of Imidazopyridines Containing Isoindoline-1, 3-Dione Framework as a New Class of BACE1 Inhibitors: design, Synthesis and SAR Analysis. Eur. J. Med. Chem. 2017, 138, 729–737. DOI: 10.1016/j.ejmech.2017.06.040.
  • Mohsen, U. A. Studies on imidazopyridine derivatives as acetylcholinesterase inhibitors. Clinical and Experimental Health Sciences 2012, 2, 119.
  • Dymińska, L. Imidazopyridines as a Source of Biological Activity and Their Pharmacological Potentials—Infrared and Raman Spectroscopic Evidence of Their Content in Pharmaceuticals and Plant Materials. Bioorg. Med. Chem. Lett. 2015, 23, 6087–6099. DOI: 10.1016/j.bmc.2015.07.045.
  • Langer, S. Zolpidem and Alpidem: Two Imidazopyridines with Selectivity for ω_1-and ω_3-Receptor Subtypes. Adv. Biochem. Psychopharmacol. 1990, 46, 61–72.
  • Mizushige, K.; Ueda, T.; Yukiiri, K.; Suzuki, H. Olprinone: A Phosphodiesterase III Inhibitor with Positive Inotropic and Vasodilator Effects. Cardiovasc. Drug Rev. 2002, 20, 163–174.
  • Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.; Biancotti, A.; Gamba, A.; Murmann, W. Derivatives of Imidazole. I. Synthesis and Reactions of Imidazo [1, 2-α] Pyridines with Analgesic, Antiinflammatory, Antipyretic, and Anticonvulsant Activity. J. Med. Chem. 1965, 8, 305–312. DOI: 10.1021/jm00327a007.
  • Boerner, R.; Moller, H. Saripidem-A New Treatment for Panic Disorders. Psychopharmakotherapie. 1997, 4, 145–148.
  • Patel, C.; Kumar, A.; Sharma, A. Recyclable Mixed Addenda Polyoxometalate: An Efficient Catalyst for the Synthesis of 1, 8-Dioxo-Octahydroxanthenes in Water. Curr. Green Chem. 2017, 4, 144–150. DOI: 10.2174/2213346105666171206150518.
  • Patel, C.; Kumar, A.; Patil, P.; Sharma, A. Efficient Synthesis of Medicinally Important Benzylidene-Indolin-2-One Derivatives Catalyzed by Biodegradable Amino Sugar “Meglumine. Lett. Org. Chem. 2019. DOI: 10.2174/1570178615666181030095728.
  • Kamal, A.; Reddy, V. S.; Karnewar, S.; Chourasiya, S. S.; Shaik, A. B.; Kumar, G. B.; Kishor, C.; Reddy, M. K.; Narasimha Rao, M. P.; Nagabhushana, A.; et al. Synthesis and Biological Evaluation of Imidazopyridine–Oxindole Conjugates as Microtubule‐Targeting Agents. Chem. Med. Chem. 2013, 8, 2015–2025. DOI: 10.1002/cmdc.201300308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.