Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 23
926
Views
31
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Recent advances in C–S bond construction to synthesize sulfone

&
Pages 3227-3264 | Received 09 Jun 2019, Published online: 13 Sep 2019

References

  • Simpkins, N. S. Sulfones in Organic Synthesis; Pergamon Press: Oxford, 1993.
  • (a) van Leusen, A. M.; Hoogenboom, B. E.; Siderius, H. A Novel and Efficient Synthesis of Oxazoles from Tosylmethylisocyanide and Carbonyl Compounds. Tetrahedron Lett. 1972, 13, 2369–2372. DOI: 10.1016/S0040-4039(01)85305-3. (b) van Leusen, A. M.; Wildeman, J.; Oldenziel, O. H. Chemistry of Sulfonylmethyl Isocyanides. 12. Base-Induced Cycloaddition of Sulfonylmethyl Isocyanides to Carbon,Nitrogen Double Bonds. Synthesis of 1,5-Disubstituted and 1,4,5-Trisubstituted Imidazoles from Aldimines and Imidoyl Chlorides. J. Org. Chem. 1977, 42, 1153–1159. DOI: 10.1021/jo00427a012.
  • Julia, M.; Paris, J.-M. Syntheses a L'aide de Sulfones v(+)- Methode de Synthese Generale de Doubles Liaisons. Tetrahedron Lett. 1973, 14, 4833–4836. DOI: 10.1016/S0040-4039(01)87348-2.
  • Liu, N.-W.; Liang, S.; Manolikakes, G. Recent Advances in the Synthesis of Sulfones. Synthesis. 2016, 48, 1939–1973. DOI: 10.1055/s-0035-1560444.
  • (a) Hofman, K.; Liu, N.-W.; Manolikakes, G. Radicals and Sulfur Dioxide: A Versatile Combination for the Construction of Sulfonyl-Containing Molecules. Chem. Eur. J. 2018, 24, 11852–11863. DOI: 10.1002/chem.201705470. (b) Qiu, G.; Zhou, K.; Gao, L.; Wu, J. Insertion of Sulfur Dioxide via a Radical Process: An Efficient Route to Sulfonyl Compounds. Org. Chem. Front. 2018, 5, 691–705. DOI: 10.1039/C7QO01073G. (c) Shaaban, S.; Liang, S.; Liu, N.-W.; Manolikakes, G. Synthesis of Sulfones via Selective C-H-Functionalization. Org. Biomol. Chem. 2017, 15, 1947–1955. DOI: 10.1039/c6ob02424f. (d) Liu, G.; Fan, C.; Wu, J. Fixation of Sulfur Dioxide into Small Molecules. Org. Biomol. Chem. 2015, 13, 1592–1599. DOI: 10.1039/c4ob02139h. (e) Bisseret, P.; Blanchard, N. Taming Sulfur Dioxide: A Breakthrough for Its Wide Utilization in Chemistry and Biology. Org. Biomol. Chem. 2013, 11, 5393–5398. DOI: 10.1039/c3ob40997j. (f) Emmett, E. J.; Willis, M. C. The Development and Application of Sulfur Dioxide Surrogates in Synthetic Organic Chemistry. Asian J. Org. Chem. 2015, 4, 602–611. DOI: 10.1002/ajoc.201500103.
  • Zhu, J.; Yang, W.-C.; Wang, X.; Wu, L. Photoredox Catalysis in C-S Bond Construction: Recent Progress in Photo-Catalyzed Formation of Sulfones and Sulfoxides. Adv. Synth. Catal. 2018, 360, 386–400. DOI: 10.1002/adsc.201701194.
  • For selected examples, see: (a) Trost, B. M.; Curran, D. P. Chemoselective Oxidation of Sulfides to Sulfones with Potassium Hydrogen Persulfate. Tetrahedron Lett. 1981, 22, 1287–1290. DOI: 10.1016/S0040-4039(01)90298-9. (b) Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X.-Q.; Noyori, R. Oxidation of Sulfides to Sulfoxides and Sulfones with 30% Hydrogen Peroxide under Organic Solvent- and Halogen-Free Conditions. Tetrahedron. 2001, 57, 2469–2476. DOI: 10.1016/S0040-4020(01)00068-0. (c) Shaabani, A.; Mirzaei, P.; Naderi, S.; Lee, D. G. Green Oxidations. The Use of Potassium Permanganate Supported on Manganese Dioxide. Tetrahedron 2004, 60, 11415–11420. DOI: 10.1016/j.tet.2004.09.087. (d) Kozak, J. A.; Dake, G. R. Total Synthesis of (+)-Fawcettidine. Angew. Chem. Int. Ed. Engl. 2008, 47, 4221–4223. DOI: 10.1002/anie.200800522. (e) Pritzius, A. B.; Breit, B. Asymmetric Rhodium-Catalyzed Addition of Thiols to Allenes: synthesis of Branched Allylic Thioethers and Sulfones. Angew. Chem. Int. Ed. Engl. 2015, 54, 3121–3125. DOI: 10.1002/anie.201411402.
  • (a) Répichet, S.; Le Roux, C.; Hernandez, P.; Dubac, J.; Desmurs, J.-R. Bismuth(III) Trifluoromethanesulfonate: An Efficient Catalyst for the Sulfonylation of Arenes. J. Org. Chem. 1999, 64, 6479–6482. DOI: 10.1021/jo9902603. (b) Olah, G. A.; Mathew, T.; Prakash, G. K. Nafion-H Catalysed Sulfonylation of Aromatics with Arene/Alkenesulfonic Acids for the Preparation of Sulfones. Chem. Commun. 2001, 1696–1697. DOI: 10.1039/b104603a. (c) Jang, D. O.; Moon, K. S.; Cho, D. H.; Kim, J. G. Highly Selective Catalytic Friedel–Crafts Acylation and Sulfonylation of Activated Aromatic Compounds Using Indium Metal. Tetrahedron Lett. 2006, 47, 6063–6066. DOI: 10.1016/j.tetlet.2006.06.099.
  • (a) Kubas, G. J. Chemical Transformations and Facile Disproportionation of Sulfur Dioxide on Transition Metal Complexes. Acc. Chem. Res. 1994, 27, 183–190. DOI: 10.1021/ar00043a001. (b) Wojcicki, A. Sulfur Dioxide Insertion Reactions of Transition Metal Alkyls and Related Complexes. Acc. Chem. Res. 1971, 4, 344–352. DOI: 10.1021/ar50046a003.
  • (a) Ishiyama, T.; Kizaki, H.; Miyaura, N.; Suzuki, A. Synthesis of Unsymmetrical Biaryl Ketones via Palladium-Catalyzed Carbonylative Cross-Coupling Reaction of Arylboronic Acids with Iodoarenes. Tetrahedron Lett. 1993, 34, 7595–7598. DOI: 10.1016/S0040-4039(00)60409-4. (b) Ishiyama, T.; Kizaki, H.; Hayashi, T.; Suzuki, A.; Miyaura, N. Palladium-Catalyzed Carbonylative Cross-Coupling Reaction of Arylboronic Acids with Aryl Electrophiles: Synthesis of Biaryl Ketones. J. Org. Chem. 1998, 63, 4726–4731. DOI: 10.1021/jo980417b. (c) Brennfuhrer, A.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylation Reactions of Aryl Halides and Related Compounds. Angew. Chem. Int. Ed. Engl. 2009, 48, 4114–4133. DOI: 10.1002/anie.200900013.
  • Deeming, A. S.; Emmett, E. J.; Richards-Taylor, C. S.; Willis, M. C. Rediscovering the Chemistry of Sulfur Dioxide: New Developments in Synthesis and Catalysis Synthesis 2014, 46, 2701–2710. DOI: 10.1055/s-0034-1379042.
  • Suzuki, H.; Abe, H. Copper-Assisted Displacement Reaction of Nonactivated Lodoarenes with Arenesulfinates. Convenient Alternative Synthesis of Unsymmetrical Diaryl Sulfones. Tetrahedron Lett. 1995, 36, 6239–6242. DOI: 10.1016/0040-4039(95)01095-Y.
  • (a) Baskin, J. M.; Wang, Z. An Efficient Copper Catalyst for the Formation of Sulfones from Sulfinic Acid Salts and Aryl Iodides. Org. Lett. 2002, 4, 4423–4425. DOI: 10.1021/ol0269190. (b) Zhu, W.; Ma, D. Synthesis of Aryl Sulfones via L-Proline-Promoted CuI-Catalyzed Coupling Reaction of Aryl Halides with Sulfinic Acid Salts. J. Org. Chem. 2005, 70, 2696–2700. DOI: 10.1021/jo047758b. (c) Srinivas, B. T. V.; Rawat, V. S.; Konda, K.; Sreedhar, B. Magnetically Separable Copper Ferrite Nanoparticles-Catalyzed Synthesis of Diaryl, Alkyl/Aryl Sulfones from Arylsulfinic Acid Salts and Organohalides/Boronic Acids. Adv. Synth. Catal. 2014, 356, 805–817. DOI: 10.1002/adsc.201301003. (d) Yang, M.; Shen, H.; Li, Y.; Shen, C.; Zhang, P. D. Glucosamine as a Green Ligand for Copper Catalyzed Synthesis of Aryl Sulfones from Aryl Halides and Sodium Sulfinates. RSC Adv 2014, 4, 26295–26300. DOI: 10.1039/C4RA03187C. (e) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M.; Bernini, R. Unsymmetrical Diaryl Sulfones and Aryl Vinyl Sulfones through Palladium-Catalyzed Coupling of Aryl and Vinyl Halides or Triflates with Sulfinic Acid Salts. J. Org. Chem. 2004, 69, 5608–5614. DOI: 10.1021/jo0493469. (f) Reeves, D. C.; Rodriguez, S.; Lee, H.; Haddad, N.; Krishnamurthy, D.; Senanayake, C. H. Palladium-Catalyzed Coupling of Vinyl Tosylates with Arylsulfinate Salts. Tetrahedron Lett. 2009, 50, 2870–2873. DOI: 10.1016/j.tetlet.2009.03.174.
  • (a) Ma, D.; Niu, S.; Zhao, J.; Jiang, X.; Jiang, Y.; Zhang, X.; Sun, T. A New Class of Amide Ligands Enable Cu-Catalyzed Coupling of Sodium Methanesulfinate with (Hetero)Aryl Chlorides. Chin. J. Chem. 2017, 35, 1661–1664. DOI: 10.1002/cjoc.201700477. (b) Zhao, J.; Niu, S.; Jiang, X.; Jiang, Y.; Zhang, X.; Sun, T.; Ma, D. A Class of Amide Ligands Enable Cu-Catalyzed Coupling of (Hetero)Aryl Halides with Sulfinic Acid Salts under Mild Conditions. J. Org. Chem. 2018, 83, 6589–6598. DOI: 10.1021/acs.joc.8b00888.
  • Liu, N.-W.; Liang, S.; Margraf, N.; Shaaban, S.; Luciano, V.; Drost, M.; Manolikakes, G. Nickel-Catalyzed Synthesis of Diaryl Sulfones from Aryl Halides and Sodium Sulfinates. Eur. J. Org. Chem. 2018, 2018, 1208–1210. DOI: 10.1002/ejoc.201701478.
  • (a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035–10074. DOI: 10.1021/acs.chemrev.6b00018. (b) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp(3)-sp(2) Cross-Coupling. Acc. Chem. Res. 2016, 49, 1429–1439. DOI: 10.1021/acs.accounts.6b00214.
  • (a) Yue, H.; Zhu, C.; Rueping, M. Cross-Coupling of Sodium Sulfinates with Aryl, Heteroaryl, and Vinyl Halides by Nickel/Photoredox Dual Catalysis. Angew. Chem. Int. Ed. Engl. 2018, 57, 1371–1375. DOI: 10.1002/anie.201711104. (b) Cabrera-Afonso, M. J.; Lu, Z.-P.; Kelly, C. B.; Lang, S. B.; Dykstra, R.; Gutierrez, O.; Molander, G. A. Engaging Sulfinate Salts via Ni/Photoredox Dual Catalysis Enables Facile Csp2 -SO2R Coupling. Chem. Sci. 2018, 9, 3186–3191. DOI: 10.1039/c7sc05402e. (c) Liu, N.-W.; Hofman, K.; Herbert, A.; Manolikakes, G. Visible-Light Photoredox/Nickel Dual Catalysis for the Cross-Coupling of Sulfinic Acid Salts with Aryl Iodides. Org. Lett. 2018, 20, 760–763. DOI: 10.1021/acs.orglett.7b03896.
  • (a) Gualandi, A.; Mazzarella, D.; Ortega-Martínez, A.; Mengozzi, L.; Calcinelli, F.; Matteucci, E.; Monti, F.; Armaroli, N.; Sambri, L.; Cozzi, P. G. Photocatalytic Radical Alkylation of Electrophilic Olefins by Benzylic and Alkylic Zinc-Sulfinates. ACS Catal. 2017, 7, 5357–5362. DOI: 10.1021/acscatal.7b01669. (b) Hering, T.; Meyer, A. U.; König, B. Photocatalytic Anion Oxidation and Applications in Organic Synthesis. J. Org. Chem. 2016, 81, 6927–6936. DOI: 10.1021/acs.joc.6b01050.
  • (a) Kar, A.; Sayyed, I. A.; Lo, W. F.; Kaiser, H. M.; Beller, M.; Tse, M. K. A General Copper-Catalyzed Sulfonylation of Arylboronic Acids. Org. Lett. 2007, 9, 3405–3408. DOI: 10.1021/ol071396n. (b) Huang, F.; Batey, R. A. Cross-Coupling of Organoboronic Acids and Sulfinate Salts Using Catalytic Copper(II) Acetate and 1,10-Phenanthroline: synthesis of Aryl and Alkenylsulfones. Tetrahedron 2007, 63, 7667–7672. DOI: 10.1016/j.tet.2007.05.029. (c) Beaulieu, C.; Guay, D.; Wang, Z.; Evans, D. A. A Mild and Efficient New Synthesis of Aryl Sulfones from Boronic Acids and Sulfinic Acid Salts. Tetrahedron Lett. 2004, 45, 3233–3236. DOI: 10.1016/j.tetlet.2004.02.127. (d) Gund, S. H.; Shelkar, R. S.; Nagarkar, J. M. Copper Catalyzed Synthesis of Unsymmetrical Diaryl Sulfones from an Arenediazonium Salt and Sodium p-Toluenesulfinate. RSC Adv. 2015, 5, 62926–62930. DOI: 10.1039/C5RA10291J. (e) Tian, H.; Cao, A.; Qiao, L.; Yu, A.; Chang, J.; Wu, Y. First Palladium-Catalyzed Denitrated Coupling of Nitroarenes with Sulfinates. Tetrahedron. 2014, 70, 9107–9112. DOI: 10.1016/j.tet.2014.09.087.
  • Johnson, T. C.; Elbert, B. L.; Farley, A. J. M.; Gorman, T. W.; Genicot, C.; Lallemand, B.; Pasau, P.; Flasz, J.; Castro, J. L.; MacCoss, M.; et al. Direct Sulfonylation of Anilines Mediated by Visible Light. Chem. Sci. 2018, 9, 629–633. DOI: 10.1039/C7SC03891G.
  • Yang, Y.; Li, W.; Xia, C.; Ying, B.; Shen, C.; Zhang, P. Catalyst-Controlled Selectivity in C−S Bond Formation: Highly Efficient Synthesis of C2- and C3-Sulfonylindoles. ChemCatChem. 2016, 8, 304–307. DOI: 10.1002/cctc.201500917.
  • (a) Jiang, Q.; Xu, B.; Jia, J.; Zhao, A.; Zhao, Y.-R.; Li, Y.-Y.; He, N.-N.; Guo, C.-C. Copper-Catalyzed Aerobic Decarboxylative Sulfonylation of Cinnamic Acids with Sodium Sulfinates: Stereospecific Synthesis of (E)-Alkenyl Sulfones. J. Org. Chem. 2014, 79, 7372–7379. DOI: 10.1021/jo5010845. (b) Wei, W.; Li, J.; Yang, D.; Wen, J.; Jiao, Y.; You, J.; Wang, H. Copper-Catalyzed Highly Selective Direct Hydrosulfonylation of Alkynes with Arylsulfinic Acids Leading to Vinyl Sulfones. Org. Biomol. Chem. 2014, 12, 1861–1864. DOI: 10.1039/c3ob42522c.
  • Gui, Q.; Han, K.; Liu, Z.; Su, Z.; He, X.; Jiang, H.; Tian, B.; Li, Y. E -Selective Synthesis of Vinyl Sulfones via Silver-Catalyzed Sulfonylation of Styrenes. Org. Biomol. Chem. 2018, 16, 5748–5751. DOI: 10.1039/C8OB01502C.
  • (a) Wei, W.; Wen, J.; Yang, D.; Wu, M.; You, J.; Wang, H. Iron-Catalyzed Direct Difunctionalization of Alkenes with Dioxygen and Sulfinic Acids: A Highly Efficient and Green Approach to β-Ketosulfones. Org. Biomol. Chem 2014, 12, 7678–7681. DOI: 10.1039/C4OB01369G. (b) Yuan, Z.; Wang, H. Y.; Mu, X.; Chen, P.; Guo, Y-l.; Liu, G. Highly Selective Pd-Catalyzed Intermolecular Fluorosulfonylation of Styrenes. J. Am. Chem. Soc. 2015, 137, 2468–2471. DOI: 10.1021/ja5131676. (c) Emer, E.; Pfeifer, L.; Brown, J. M.; Gouverneur, V. cis-Specific Hydrofluorination of Alkenylarenes under Palladium Catalysis through an Ionic Pathway. Angew. Chem. Int. Ed. Engl. 2014, 53, 4181–4185. DOI: 10.1002/anie.201310056.
  • Zhang, G.; Zhang, L.; Yi, H.; Luo, Y.; Qi, X.; Tung, C.-H.; Wu, L.-Z.; Lei, A. Visible-Light Induced Oxidant-Free Oxidative Cross-Coupling for Constructing Allylic Sulfones from Olefins and Sulfinic Acids. Chem. Commun. (Camb.) 2016, 52, 10407–10410. DOI: 10.1039/c6cc04109d.
  • Yang, F. L.; Tian, S. K. Sulfonyl Hydrazides as Sulfonyl Sources in Organic Synthesis. Tetrahedron Lett. 2017, 58, 487–504. DOI: 10.1016/j.tetlet.2016.12.058.
  • Wu, X.-M.; Wang, Y. A Mild and Base-Free Synthesis of Unsymmetrical Diaryl Sulfones from Arylboronic Acids and Arylsulfonyl Hydrazides. Synlett. 2014, 25, 1163–1167. DOI: 10.1055/s-0033-1341023.
  • Li, X.; Xu, Y.; Wu, W.; Jiang, C.; Qi, C.; Jiang, H. Copper-Catalyzed Aerobic Oxidative N-S Bond Functionalization for C-S Bond Formation: regio- and Stereoselective Synthesis of Sulfones and Thioethers. Chemistry. 2014, 20, 7911–7915. DOI: 10.1002/chem.201402815.
  • (a) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. Iron/Copper Co-Catalyzed Synthesis of Vinyl Sulfones from Sulfonyl Hydrazides and Alkyne Derivatives. J. Org. Chem. 2015, 80, 4697–4703. DOI: 10.1021/acs.joc.5b00558. (b) Li, S.; Li, X.; Yang, F.; Wu, Y. Copper-Catalyzed Direct Decarboxylative Hydrosulfonylation of Aryl Propiolic Acids with Sulfonylhydrazides Leading to Vinylsulfones. Org. Chem. Front. 2015, 2, 1076–1079. DOI: 10.1039/C5QO00212E.
  • Taniguchi, T.; Idota, A.; Ishibashi, H. Iron-Catalyzed Sulfonyl Radical Formations from Sulfonylhydrazides and Oxidative Addition to Alkenes. Org. Biomol. Chem. 2011, 9, 3151–3153. DOI: 10.1039/c0ob01119c.
  • (a) Cai, S.; Chen, D.; Xu, Y.; Weng, W.; Li, L.; Zhang, R.; Huang, M. Visible-Light-Promoted Syntheses of β-Keto Sulfones from Alkynes and Sulfonylhydrazides. Org. Biomol. Chem. 2016, 14, 4205–4209. DOI: 10.1039/c6ob00617e. (b) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Copper-Catalyzed Direct Oxysulfonylation of Alkenes with Dioxygen and Sulfonylhydrazides Leading to β-Ketosulfones. Chem. Commun. (Camb.) 2013, 49, 10239–10241. DOI: 10.1039/c3cc45803b.
  • Liu, Y.; Zheng, G.; Zhang, Q.; Li, Y.; Zhang, Q. Copper-Catalyzed Three Component Regio- and Stereospecific Selenosulfonation of Alkynes: Synthesis of (E)-β-Selenovinyl Sulfones. J. Org. Chem. 2017, 82, 2269–2275. DOI: 10.1021/acs.joc.6b03049.
  • Reddy, M. A.; Reddy, P. S.; Sreedhar, B. Iron(III) Chloride‐Catalyzed Direct Sulfonylation of Alcohols with Sodium Arenesulfinates. Adv. Synth. Catal. 2010, 352, 1861–1869. DOI: 10.1002/adsc.200900905.
  • (a) Wang, T.-T.; Wang, F.-X.; Yang, F.-L.; Tian, S.-K. Palladium-Catalyzed Aerobic Oxidative Coupling of Enantioenriched Primary Allylic Amines with Sulfonyl Hydrazides Leading to Optically Active Allylic Sulfones. Chem. Commun. (Camb.) 2014, 50, 3802–3805. DOI: 10.1039/c4cc00275j. (b) Xu, J.-K.; Gu, Y.; Tian, S.-K. Enantiospecific Allylic Alkylation of Substituted Hydrazines with Allylic Alcohols. Chin. J. Org. Chem. 2015, 35, 618. DOI: 10.6023/cjoc201412049.
  • Xu, K.; Khakyzadeh, V.; Bury, T.; Breit, B. Direct Transformation of Terminal Alkynes to Branched Allylic Sulfones. J. Am. Chem. Soc. 2014, 136, 16124–16127. DOI: 10.1021/ja509383r.
  • Nguyen, B.; Emmet, E. J.; Willis, M. C. Palladium-Catalyzed Aminosulfonylation of Aryl Halides. J. Am. Chem. Soc. 2010, 132, 16372–16373. DOI: 10.1021/ja1081124.
  • Emmett, E. J.; Hayter, B. R.; Willis, M. C. Palladium-Catalyzed Three-Component Diaryl Sulfone Synthesis Exploiting the Sulfur Dioxide Surrogate DABSO. Angew. Chem. Int. Ed. Engl. 2013, 52, 12679–12683. DOI: 10.1002/anie.201305369.
  • Deeming, A. S.; Russell, C. J.; Hennessy, A. J.; Willis, M. C. DABSO-Based, Three-Component, One-Pot Sulfone Synthesis. Org. Lett. 2014, 16, 150–153. DOI: 10.1021/ol403122a.
  • Rocke, B. N.; Bahnck, K. B.; Herr, M.; Lavergne, S.; Mascitti, V.; Perreault, C.; Polivkova, J.; Shavnya, A. Synthesis of Sulfones from Organozinc Reagents, DABSO, and Alkyl Halides. Org. Lett. 2014, 16, 154–157. DOI: 10.1021/ol4031233.
  • Deeming, A. S.; Russell, C. J.; Willis, M. C. Palladium(II)-Catalyzed Synthesis of Sulfinates from Boronic Acids and DABSO: A Redox-Neutral, Phosphine-Free Transformation. Angew. Chem. Int. Ed. Engl. 2016, 55, 747–750. DOI: 10.1002/anie.201508370.
  • Chen, Y.; Willis, M. C. Copper(i)-Catalyzed Sulfonylative Suzuki-Miyaura Cross-Coupling. Chem. Sci. 2017, 8, 3249–3253. DOI: 10.1039/c6sc05483h.
  • (a) Ortgies, D. H.; Barthelme, A.; Aly, S.; Desharnais, B.; Rioux, S.; Forgione, P. Scope of the Desulfinylative Palladium-Catalyzed Cross-Coupling of Aryl Sulfinates with Aryl Bromides. Synthesis 2013, 45, 694–702. DOI: 10.1055/s-0032-1318151. (b) Ortgies, D. H.; Hassanpour, A.; Chen, F.; Woo, S.; Forgione, P. Desulfination as an Emerging Strat-Egy in Palladium-Catalyzed C–C Coupling Reactions. Eur. J. Org. Chem. 2016, 2016, 408–425. DOI: 10.1002/ejoc.201501231.
  • (a) Yu, J.; Liu, J.; Shi, G.; Shao, C.; Zhang, Y. Ligand-Promoted Oxidative Cross-Coupling of Aryl Boronic Acids and Aryl Silanes by Palladium Catalysis. Angew. Chem. Int. Ed. Engl. 2015, 54, 4079–4082. DOI: 10.1002/anie.201412288. (b) He, J.; Takise, R.; Fu, H.; Yu, J. Ligand-Enabled Cross-Coupling of C(sp(3))-H Bonds with Arylsilanes. J. Am. Chem. Soc. 2015, 137, 4618–4621. DOI: 10.1021/jacs.5b00890.
  • Emmett, E. J.; Hayter, B. R.; Willis, M. C. Palladium‐Catalyzed Synthesis of Ammonium Sulfinates from Aryl Halides and a Sulfur Dioxide Surrogate: A Gas‐ and Reductant‐Free Process. Angew. Chem. Int. Ed. 2014, 38, 10204–10208. DOI: 10.1002/anie.201404527.
  • Zheng, D.; Mao, R.; Li, Z.; Wu, J. A Copper(i)-Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur Dioxide, and Alkyl Halides. Org. Chem. Front. 2016, 3, 359–363. DOI: 10.1039/C5QO00399G.
  • Yang, D.; Sun, P.; Wei, W.; Liu, F.; Zhang, H.; Wang, H. Copper-Catalyzed Regioselective Cleavage of C–X and C–H Bonds: A Strategy for Sulfur Dioxide Fixation. Chemistry. 2018, 24, 4423–4427. DOI: 10.1002/chem.201705866.
  • Zhou, K.; Chen, M.; Yao, L.; Wu, J. Synthesis of Sulfonated Naphthols via C–H Bond Functionalization with the Insertion of Sulfur Dioxide. Org. Chem. Front. 2018, 5, 371–375. DOI: 10.1039/C7QO00811B.
  • Xiang, Y.; Kuang, Y.; Wu, J. Generation of β-Halo Vinylsulfones through a Multicomponent Reaction with Insertion of Sulfur Dioxide. Chem. Eur. J. 2017, 23, 6996–6999. DOI: 10.1002/chem.201701465.
  • Zhang, J.; Xie, W.; Ye, S.; Wu, J. Synthesis of β-Hydroxysulfones through a Copper(ii)-Catalyzed Multicomponent Reaction with the Insertion of Sulfur Dioxide. Org. Chem. Front. 2019, 6, 2254–2259. DOI: 10.1039/C9QO00520J.
  • Ye, S.; Wu, J. A Palladium-Catalyzed Reaction of Aryl Halides, Potassium Metabisulfite, and Hydrazines. Chem. Commun. (Camb.) 2012, 48, 10037–10039. DOI: 10.1039/c2cc34957d.
  • Shavnya, A.; Coffey, S. B.; Smith, A. C.; Mascitti, V. Palladium-Catalyzed Sulfination of Aryl and Heteroaryl Halides: Direct Access to Sulfones and Sulfonamides. Org. Lett. 2013, 15, 6226–6229. DOI: 10.1021/ol403072r.
  • Johnson, M. W.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Mascitti, V.; Toste, F. D. Application of Fundamental Organometallic Chemistry to the Development of a Gold-Catalyzed Synthesis of Sulfinate Derivatives. Angew. Chem. Int. Ed. Engl. 2014, 53, 4404–4407. DOI: 10.1002/anie.201400037.
  • Shavnya, A.; Hesp, K. D.; Mascitti, V.; Smith, A. C. Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfones from (Hetero)Aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulfite. Angew. Chem. Int. Ed. Engl. 2015, 54, 13571–13575. DOI: 10.1002/anie.201505918.
  • (a) Zhu, H.; Shen, Y.; Deng, Q.; Chen, J.; Tu, T. Pd(NHC)-Catalyzed Alkylsulfonylation of Boronic Acids: A General and Efficient Approach for Sulfone Synthesis. Chem. Commun. 2017, 53, 12473–12476. DOI: 10.1039/C7CC05851A. (b) Zhu, H.; Shen, Y.; Wen, D.; Le, Z.-G.; Tu, T. Selective Synthesis of ortho-Substituted Diarylsulfones by Using NHC-Au Catalysts under Mild Conditions. Org. Lett. 2019, 21, 974–979. DOI: 10.1021/acs.orglett.8b03957.
  • Gong, X.; Chen, J.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Benzylic C(sp3)-H Bond Sulfonylation of 4-Methylphenols with the Insertion of Sulfur Dioxide under Photocatalysis. Chem. Commun. (Camb.) 2018, 54, 11172–11175. DOI: 10.1039/c8cc06567e.
  • Barton, D. H. R.; Lacher, B.; Misterkiewicz, B.; Zard, S. Z. The Invention of Radical Reactions. Tetrahedron. 1988, 44, 1153–1158. DOI: 10.1016/S0040-4020(01)85895-6.
  • Shyam, P. K.; Son, S.; Jang, H.-Y. Copper-Catalyzed Sulfonylation of Alkenes and Amines by Using Thiosulfonates as a Sulfonylating Agent. Eur. J. Org. Chem. 2017, 2017, 5025–5031. DOI: 10.1002/ejoc.201700971.
  • Chu, X.-Q.; Ge, D.; Loh, T.-P.; Shen, Z.-L. Oxidant-Directed Chemoselective Sulfonylation and Sulfonyloximation of Alkenes via Cleaving the C–S Bond in TosMIC. Org. Chem. Front. 2019, 6, 835–840. DOI: 10.1039/C8QO01346B.
  • (a) Murakami, T.; Furusawa, K. One-Pot Synthesis of Aryl Sulfones from Alcohols. Synthesis. 2002, 2002, 479–482. DOI: 10.1055/s-2002-20958. (b) Ju, Y.; Kumar, D.; Varma, R. S. Revisiting Nucleophilic Substitution Reactions: Microwave-Assisted Synthesis of Azides, Thiocyanates, and Sulfones in an Aqueous Medium. J. Org. Chem. 2006, 71, 6697–6700. DOI: 10.1021/jo061114h.
  • (a) Liang, S.; Zhang, R.-Y.; Xi, L.-Y.; Chen, S.-Y.; Yu, X.-Q. Sulfonylation of Five-Membered Heterocycles via an S(N)Ar Reaction. J. Org. Chem. 2013, 78, 11874–11880. DOI: 10.1021/jo401828b. (b) Maloney, K. M.; Kuethe, J. T.; Linn, K. A Practical, One-Pot Synthesis of Sulfonylated Pyridines. Org. Lett. 2011, 13, 102–105. DOI: 10.1021/ol102629c.
  • Chu, X.-Q.; Meng, H.; Xu, X.-P.; Ji, S.-J. One-Pot Synthesis of Allylic Sulfones, Ketosulfones, and Triflyl Allylic Alcohols from Domino Reactions of Allylic Alcohols with Sulfinic Acid Under Metal-Free Conditions. Chemistry. 2015, 21, 11359–11368. DOI: 10.1002/chem.201500469.
  • von Wolff, N.; Char, J.; Frogneux, X.; Cantat, T. Synthesis of Aromatic Sulfones from SO2 and Organosilanes Under Metal-Free Conditions. Angew. Chem. Int. Ed. Engl. 2017, 56, 5616–5619. DOI: 10.1002/anie.201702311.
  • Li, Y.; Liu, T.; Qiu, G.; Wu, J. Catalyst-Free Sulfonylation of (Hetero)Aryl Iodides with Sodium Dithionite. Adv. Synth. Catal. 2019, 361, 1154–1159. DOI: 10.1002/adsc.201801445.
  • Shyam, P.; Jang, H.-Y. Synthesis of Sulfones and Sulfonamides via Sulfinate Anions: Revisiting the Utility of Thiosulfonates. J. Org. Chem. 2017, 82, 1761–1767. DOI: 10.1021/acs.joc.6b03016.
  • (a) Shavnya, A.; Coffey, S. B.; Hesp, K. D.; Ross, S. C.; Tsai, A. S. Reaction of Alkyl Halides with Rongalite: One-Pot and Telescoped Syntheses of Aliphatic Sulfonamides, Sulfonyl Fluorides, and Unsymmetrical Sulfones. Org. Lett. 2016, 18, 5848–5851. DOI: 10.1021/acs.orglett.6b02894. (b) Baskin, J. M.; Wang, Z. A Mild, Convenient Synthesis of Sulfinic Acid Salts and Sulfonamides from Alkyl and Aryl Halides. Tetrahedron Lett. 2002, 43, 8479–8483. DOI: 10.1016/S0040-4039(02)02073-7.
  • Day, J. J.; Neill, D. L.; Xu, S.; Xian, M. Benzothiazole Sulfinate: A Sulfinic Acid Transfer Reagent under Oxidation-Free Conditions. Org. Lett. 2017, 19, 3819–3822. DOI: 10.1021/acs.orglett.7b01693.
  • Zhang, Z.; Wang, S.; Zhang, Y.; Zhang, G. Regiospecific Cleavage of S-N Bonds in Sulfonyl Azides: Sulfonyl Donors. J. Org. Chem. 2019, 84, 3919–3926. DOI: 10.1021/acs.joc.8b03046.
  • Singh, M.; Yadav, L. D. S.; Singh, R. K. P. Direct Radical Sulfonylation at α-C(sp3)-H of THF with Sodium Sulfinates in Aqueous Medium. Tetrahedron Lett. 2019, 60, 810–813. DOI: 10.1016/j.tetlet.2019.02.021.
  • Mulina, O. M.; Pirgach, D. A.; Nikishin, G. I.; Terent'ev, A. O. Switching of Sulfonylation Selectivity by Nature of Solvent and Temperature: The Reaction of β-Dicarbonyl Compounds with Sodium Sulfinates Under the Action of Iron-Based Oxidants. Eur. J. Org. Chem. 2019, 2019, 4179–4188. DOI: 10.1002/ejoc.201900258.
  • Griffiths, R. J.; Kong, W. C.; Richards, S. A.; Burley, G. A.; Willis, M. C.; Talbot, E. P. A. Oxidative β-C-H Sulfonylation of Cyclic Amines. Chem. Sci. 2018, 9, 2295–2300. DOI: 10.1039/c7sc04900e.
  • (a) Liang, S.; Ren, Y.; Manolikakes, G. Manganese(III) Acetate Mediated C-H Sulfonylation of 1,4-Dimethoxybenzenes with Sodium and Lithium Sulfinates. Eur. J. Org. Chem. 2017, 2017, 4117–4120. DOI: 10.1002/ejoc.201700713. (b) Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G.-J. Chemoselective Cross-Coupling Reaction of Sodium Sulfinates with Phenols under Aqueous Conditions. Green Chem. 2016, 18, 1538–1546. DOI: 10.1039/C5GC02292D.
  • Nikl, J.; Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Direct Metal- and Reagent-Free Sulfonylation of Phenols with Sodium Sulfinates by Electrosynthesis. Chemistry. 2019, 25, 6891–6895. DOI: 10.1002/chem.201900850.
  • Zhou, K.; Zhang, J.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. C–H Bond Sulfonylation of Anilines with the Insertion of Sulfur Dioxide under Metal-Free Conditions. Chem. Commun. 2018, 54, 7459–7462. DOI: 10.1039/C8CC03465F.
  • (a) Guo, Y.-J.; Lu, S.; Tian, L.-L.; Huang, E.-L.; Hao, X.-Q.; Zhu, X.; Shao, T.; Song, M.-P. Iodine-Mediated Difunctionalization of Imidazopyridines with Sodium Sulfinates: Synthesis of Sulfones and Sulfides. J. Org. Chem. 2018, 83, 338–349. DOI: 10.1021/acs.joc.7b02734. (b) Li, H.; Wang, X.; Yan, J. Convenient KI-Catalyzed Regioselective Synthesis of 2-Sulfonylindoles Using Water as Solvent. New J. Chem. 2017, 41, 4277–4280. DOI: 10.1039/C7NJ00474E. (c) Zhang, J.; Wang, Z.; Chen, L.; Liu, Y.; Liu, P.; Dai, B. The Fast and Efficient KI/H 2 O 2 Mediated 2-Sulfonylation of Indoles and N -Methylpyrrole in Water. RSC Adv. 2018, 8, 41651–41656. DOI: 10.1039/C8RA09367A.
  • Pramanik, M.; Choudhuri, K.; Mal, P. N -Iodosuccinimide as Bifunctional Reagent in (E)-Selective C(sp 2)−H Sulfonylation of Styrenes. Asian J. Org. Chem. 2019, 8, 144–150. DOI: 10.1002/ajoc.201800644.
  • (a) Kumar, S.; Singh, R.; Singh, K. N. AIBN-Initiated Denitrative Cross-Coupling Reactions of β-Nitrostyrenes with Sulfonyl Hydrazides/Disulfides: A Metal-Free Approach towards Vinyl Sulfones. Asian J. Org. Chem. 2018, 7, 359–362. DOI: 10.1002/ajoc.201700632. (b) Nie, G.; Deng, X.; Lei, X.; Hu, Q.; Chen, Y. Mn(Iii)-Mediated Regioselective Synthesis of (E)-Vinyl Sulfones from Sodium Sulfinates and Nitro-Olefins. RSC Adv. 2016, 6, 75277–75281. DOI: 10.1039/C6RA17842A.
  • (a) Singh, R.; Allam, B. K.; Singh, N.; Kumari, K.; Singh, S. K.; Singh, K. N. A Direct Metal-Free Decarboxylative Sulfono Functionalization (DSF) of Cinnamic Acids to α,β-Unsaturated Phenyl Sulfones. Org. Lett. 2015, 17, 2656–2659. DOI: 10.1021/acs.orglett.5b01037. (b) Li, P.; Wang, G.-W. Visible-Light-Induced Decarboxylative Sulfonylation of Cinnamic Acids with Sodium Sulfinates by Using Merrifield Resin Supported Rose Bengal as a Catalyst. Org. Biomol. Chem. 2019, 17, 5578–5585. DOI: 10.1039/c9ob00790c.
  • Chen, P.; Zhu, C.; Zhu, R.; Wu, W.; Jiang, H. MnO2-Promoted Oxidative Radical Sulfonylation of Haloalkynes with Sulfonyl Hydrazides: C(sp)-S Bond Formation towards Alkynyl Sulfones. Chem. Asian J. 2017, 12, 1875–1878. DOI: 10.1002/asia.201700550.
  • (a) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Activation of ‘Inert’ Alkenyl/Aryl C–O Bond and Its Application in Cross-Coupling Reactions. Chemistry. 2011, 17, 1728–1759. DOI: 10.1002/chem.201002273. (b) Zeng, H.; Qiu, Z.; Domínguez-Huerta, A.; Hearne, Z.; Chen, Z.; Li, C.-J. An Adventure in Sustainable Cross-Coupling of Phenols and Derivatives via Carbon–Oxygen Bond Cleavage. ACS Catal. 2017, 7, 510–519. DOI: 10.1021/acscatal.6b02964. (c) Wuts, P. G. M.; Greene, T. W. In Greene's Protective Groups in Organic Synthesis, 4th ed.; John Wiley & Sons: Hoboken, 2006.pp 421.
  • Ratushnyy, M.; Kamenova, M.; Gevorgyan, V. A Mild Light-Induced Cleavage of the S-O Bond of Aryl Sulfonate Esters Enables Efficient Sulfonylation of Vinylarenes. Chem. Sci. 2018, 9, 7193–7197. DOI: 10.1039/c8sc02769b.
  • (a) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Aerobic Oxysulfonylation of Alkenes Leading to Secondary and Tertiary β-Hydroxysulfones. Angew. Chem. Int. Ed. Engl. 2013, 52, 7156–7159. DOI: 10.1002/anie.201301634. (b) Kariya, A.; Yamaguchi, T.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. Molecular-Iodine-Catalyzed Aerobic Oxidative Synthesis of β-Hydroxy Sulfones from Alkenes. RSC Adv. 2014, 4, 13191–13194. DOI: 10.1039/C3RA47863G. (c) Choudhuri, K.; Achar, T. K.; Mal, P. Iodine-Triggered Aerobic Oxysulfonylation of Styrenes. Adv. Synth. Catal. 2017, 359, 3566–3576. DOI: 10.1002/adsc.201700772.
  • (a) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. Dioxygen-Triggered Oxidative Radical Reaction: direct Aerobic Difunctionalization of Terminal Alkynes toward β-Keto Sulfones. J. Am. Chem. Soc. 2013, 135, 11481–11484. DOI: 10.1021/ja4052685. (b) Xiong, Y.-S.; Weng, J.; Lu, G. Manganese(III)-Mediated and -Catalyzed Decarboxylative Hydroxysulfonylation of Arylpropiolic Acids with Sodium Sulfinates in Water. Adv. Synth. Catal. 2018, 360, 1611–1616. DOI: 10.1002/adsc.201701209. (c) Chawla, R.; Singh, A. K.; Yadav, L. D. S. K 2 S 2 O 8 -Mediated Aerobic Oxysulfonylation of Olefins into β-Keto Sulfones in Aqueous Media. Eur. J. Org. Chem. 2014, 2014, 2032–2036. DOI: 10.1002/ejoc.201301833.
  • (a) Sun, Y.; Abdukader, A.; Lu, D.; Zhang, H.; Liu, C. Synthesis of (E)-β-Iodo Vinylsulfones via Iodine-Promoted Iodosulfonylation of Alkynes with Sodium Sulfinates in an Aqueous Medium at Room Temperature. Green Chem. 2017, 19, 1255–1258. DOI: 10.1039/C6GC03387C. (b) Sun, K.; Lv, Y.; Zhu, Z.; Jiang, Y.; Qi, J.; Wu, H.; Zhang, Z.; Zhang, G.; Wang, X. A Convenient Access to β-Iodo Sulfone by the Iodine-Mediated Iodosulfonylation of Alkenes. RSC Adv. 2015, 5, 50701–50704. DOI: 10.1039/C5RA07065A.
  • (a) Chen, F.; Zhou, N.-N.; Zhan, J.-L.; Han, B.; Yu, W. tert-Butyl Nitrite-Mediated Vicinal Sulfoximation of Alkenes with Sulfinic Acids: A Highly Efficient Approach toward α-Sulfonyl Ketoximes. Org. Chem. Front. 2017, 4, 135–139. DOI: 10.1039/C6QO00535G. (b) Wang, B.; Tang, L.; Liu, L.; Li, Y.; Yang, Y.; Wang, Z. Base-Mediated Tandem Sulfonylation and Oximation of Alkenes in Water. Green Chem. 2017, 19, 5794–5799. DOI: 10.1039/C7GC03051G. (c) Wang, B.; Yan, Z.; Liu, L.; Wang, J.; Zha, Z.; Wang, Z. TBN-Mediated Regio- and Stereoselective Sulfonylation and Oximation (Oximosulfonylation) of Alkynes with Sulfonyl Hydrazines in EtOH/H2O. Green Chem. 2019, 21, 205–212. DOI: 10.1039/C8GC02708K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.