Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 23
582
Views
4
CrossRef citations to date
0
Altmetric
ARTICLES

Efficient selective oxidation of alcohols to aldehydes catalyzed by a morpholinone nitroxide

, &
Pages 3380-3388 | Received 02 Aug 2019, Published online: 18 Sep 2019

References

  • Gavriilidis, A.; Constantinou, A.; Hellgardt, K.; Hii, K. K.; Hutchings, G. J.; Brett, G. L.; Kuhn, S.; Marsden, S. P.Aerobic Oxidations in Flow: Opportunities for the Fine Chemicals and Pharmaceuticals Industries. React. Chem. Eng. 2016, 1, 595–612. DOI: 10.1039/C6RE00155F.
  • Zhan, B.-Z.; Thompson, A. Recent Developments in the Aerobic Oxidation of Alcohols. Tetrahedron 2004, 60, 2917–2935. DOI: 10.1016/j.tet.2004.01.043.
  • Dai, W.; Lv, Y.; Wang, L. Y.; Shang, S. S.; Chen, B.; Li, G. S.; Gao, S. Highly Efficient Oxidation of Alcohols Catalyzed by a Porphyrin-Inspired Manganese Complex. Chem. Commun. 2015, 51, 11268–11271. DOI: 10.1039/C5CC03657G.
  • Imura, Y.; Akiyama, R.; Furukawa, S.; Kan, R.; Morita-Imura, C.; Komatsu, T.; Kawai, T. Au-Ag Nanoflower Catalysts with Clean Surfaces for Alcohol Oxidation. Chem-Asian J. 2019, 14, 547–552. DOI: 10.1002/asia.201801711.
  • Hussain, M. I.; Feng, Y.; Hu, L.; Deng, Q.; Zhang, X.; Xiong, Y. Copper-Catalyzed Oxidative Difunctionalization of Terminal Unactivated Alkenes. J. Org. Chem. 2018, 83, 7852–7859. DOI: 10.1021/acs.joc.8b00729.
  • Schilling, W.; Riemer, D.; Zhang, Y.; Hatami, N.; Das, S. Metal-Free Catalyst for Visible-Light-Induced Oxidation of Unactivated Alcohols using Air/Oxygen as an Oxidant. ACS Catal. 2018, 8, 5425–5430. DOI: 10.1021/acscatal.8b01067.
  • Shibuya, M.; Furukawa, K.; Yamamoto, Y. Selective Aerobic Oxidation of Primary Alcohols to Aldehydes. Synlett 2017, 28, 1554–1557. DOI: 10.1055/s-0036-1588155.
  • Sheldon, R. A. Recent Advances in Green Catalytic Oxidations of Alcohols in Aqueous Media. Catal. Today 2015, 247, 4–13. DOI: 10.1016/j.cattod.2014.08.024.
  • Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. 2010, 14, 245–251. DOI: 10.1021/op900059x.
  • Studer, A.; Vogler, T. Applications of TEMPO in Synthesis. Synthesis 2008, 2008, 1979–1993. DOI: 10.1055/s-2008-1078445.
  • Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal-OrganicFrameworks Assisted by TEMPO. ACS Catal. 2011, 1, 48–53. DOI: 10.1021/cs1000703.
  • Hoover, J. M.; Stahl, S. S. Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols. J. Org. Chem. 2011, 133, 16901–16910. DOI: 10.1021/ja206230h.
  • Banwell, M. G.; Bridges, V. S.; Dupuche, J. R.; Richards, S. L.; Walter, J. M. Oxidation of Vic-Diols to.Alpha.-Dicarbonyl Compounds using the Oxoammonium Salt Derived from 4-Acetamido-TEMPO and p-Toluenesulfonic Acid. J. Org. Chem. 1994, 59, 6338–6343. DOI: 10.1021/jo00100a040.
  • De Luca, L.; Giacomelli, G.; Masala, S.; Porcheddu, A. Trichloroisocyanuric/TEMPO Oxidation of Alcohols under Mild Conditions: A Close Investigation. J. Org. Chem. 2003, 68, 4999–5001. DOI: 10.1021/jo034276b.
  • Rychnovsky, S. D.; Vaidyanathan, R. TEMPO-Catalyzed Oxidations of Alcohols Using m-CPBA: The Role of Halide Ions. J. Org. Chem. 1999, 64, 310–312. DOI: 10.1021/jo9819032.
  • Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. Oxidation of Primary Alcohols to Carboxylic Acids with Sodium Chlorite Catalyzed by TEMPO and Bleach. J. Org. Chem. 1999, 64, 2564–2566. DOI: 10.1021/jo982143y.
  • Lucio Anelli, P.; Biffi, C.; Montanari, F.; Quici, S. Fast and Selective Oxidation of Primary Alcohols to Aldehydes or to Carboxylic Acids and of Secondary Alcohols to Ketones Mediated by Oxoammonium Salts under Two-Phase Conditions. J. Org. Chem. 1987, 52, 2559–2562. DOI: 10.1021/jo00388a038.
  • Miyazawa, T.; Endo, T. Oxidation of Diols with Oxoaminium Salts. J. Org. Chem. 1985, 50, 3930–3931. DOI: 10.1021/jo00220a053.
  • Miyazawa, T.; Endo, T.; Shiihashi, S.; Okawara, M. Selective Oxidation of Alcohols by Oxoaminium Salts (R2N:O + X-). J. Org. Chem. 1985, 50, 1332–1334. DOI: 10.1021/jo00208a047.
  • Doi, R.; Shibuya, M.; Murayama, T.; Yamamoto, Y.; Iwabuchi, Y. Development of an Azanoradamantane-Type Nitroxyl Radical Catalyst for Class-Selective Oxidation of Alcohols. J. Org. Chem. 2015, 80, 401–413. DOI: 10.1021/jo502426p.
  • Furukawa, K.; Inada, H.; Shibuya, M.; Yamamoto, Y. Chemoselective Conversion from α-Hydroxy Acids to α-Keto Acids Enabled by Nitroxyl-Radical-Catalyzed Aerobic Oxidation. Org. Lett. 2016, 18, 4230–4233. DOI: 10.1021/acs.orglett.6b01964.
  • Shibuya, M.; Doi, R.; Shibuta, T.; Uesugi, S-i.; Iwabuchi, Y. Organocatalytic One-Pot Oxidative Cleavage of Terminal Diols to Dehomologated Carboxylic Acids. Org. Lett. 2012, 14, 5006–5009. DOI: 10.1021/ol3021429.
  • Shibuya, M.; Sasano, Y.; Tomizawa, M.; Hamada, T.; Kozawa, M.; Nagahama, N.; Iwabuchi, Y. Practical Preparation Methods for Highly Active Azaadamantane-Nitroxyl-Radical-Type Oxidation Catalysts. Synthesis-Stuttgart 2011, 3418–3425. DOI: 10.1055/s-0030-1260257.
  • Rychnovsky, S. D.; Beauchamp, T.; Vaidyanathan, R.; Kwan, T. Synthesis of Chiral Nitroxides and an Unusual Racemization Reaction. J. Org. Chem. 1998, 63, 6363–6374. DOI: 10.1021/jo9808831.
  • Lai, J. T. Hindered Amines 1. 3,3,5,5-Tetrasubstituted-2-Oxomorpholines and Derivatives. Synthesis 1984, 1984, 122–123. DOI: 10.1055/s-1984-30746.
  • Lai, J. T. Hindered Amines. Novel Synthesis of 1,3,3,5,5-Pentasubstitued 2-Piperazinones. J. Org. Chem. 1980, 45, 754–755. DOI: 10.1021/jo01306a025.
  • Lai, J. T. Hindered Amines. 8. Hindered Monoazacrown Ethers. J. Org. Chem. 1985, 50, 1329–1330. DOI: 10.1021/jo00208a045.
  • Zhang, K.; Noble, B. B.; Mater, A. C.; Monteiro, M. J.; Coote, M. L.; Jia, Z. Effect of Heteroatom and Functionality Substitution on the Oxidation Potential of Cyclic Nitroxide Radicals: Role of Electrostatics in Electrochemistry. Phys. Chem. Chem. Phys. 2018, 20, 2606–2614. DOI: 10.1039/c7cp07444a.
  • Rychnovsky, S. D.; Vaidyanathan, R.; Beauchamp, T.; Lin, R.; Farmer, P. J. AM1-SM2 Calculations Model the Redox Potential of Nitroxyl Radicals Such as TEMPO. J. Org. Chem. 1999, 64, 6745–6749. DOI: 10.1021/jo990636c.
  • Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. 2-Azaadamantane N-Oxyl (AZADO) and 1-Me-AZADO: Highly Efficient Organocatalysts for Oxidation of Alcohols. J. Am. Chem. Soc. 2006, 128, 8412–8413. DOI: 10.1021/ja0620336.
  • Chen, T.; Cai, C. Selective Oxidation of Benzyl Alcohols to Aldehydes with a Salophen Copper(II) Complex and tert -Butyl Hydroperoxide at Room Temperature. Synthetic Commun. 2015, 45, 1334–1341. DOI: 10.1080/00397911.2015.1015034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.