Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 24
151
Views
8
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Convenient synthesis and anti-proliferative activity of some benzochromenes and chromenotriazolopyrimidines under classical methods and phase transfer catalysis

&
Pages 3498-3509 | Received 22 Aug 2019, Published online: 14 Oct 2019

References

  • Murry, R. D.; Mendez, J.; Brown, S. A. The Natural Coumarins: occurrence, Chemistry and Biochemistry; John Wiley and Sons: Hoboken, New Jersy, 1982.
  • Al-Haiza, M. A.; Mostafa, M. S.; El-Kady, M. Y. Synthesis and Biological Evaluation of Some New Coumarin Derivatives. Molecules 2003, 8, 275–286. doi:10.3390/80200275.
  • Bhat, M. A.; Siddiqui, N.; Khan, S. A.; Mohamed, M. I. Synthesis of Triazolothiazolidione Derivatives of Coumrin with Antimicrobial Activity. Acta. Pol. Pharm. 2009, 66, 625–632.
  • Singh, G.; Sharma, A.; Kaur, H.; Ishar, M. Chromanyl-Isoxazolidines as Antibacterial Agents: Synthesis, Biological Evalution, Quantitative Structure –Activity Relationship, and Docking Studies. Chem. Biol. Drug Des. 2016, 87, 213–223. doi:10.1111/cbdd.12653.
  • Vala, N. D.; Jardosh, H. H.; Patel, M. P. P. M. 5PS-TBD Triggered General Protocol for the Synthesis of 4H-Chromenes, Pyrano[4,3-b]Pyran and Pyrano[3,2-c]Chromene Derivatives of 1H-Pyrazole and Their Biological Activities. Chin. Chem. Lett. 2016, 27, 168–172.
  • Bingi, C.; Emmadi, N. R.; Chennapuram, M.; Poornachandra, Y.; Kumar, C. G.; Nanubolu, J. B.; Atmakur, K. One Pot Catalyst Free Synthesis of Novel Kolic Acid Tagged 2-Aryl/Aryl Substituted-4H-Chromenes and Evaluation of Their Antimicrobial and anti-Biofilm. Bioorg. Med. Chem. Lett. 2015, 25, 1915–1919. doi:10.1016/j.bmcl.2015.03.034.
  • Killander, D.; Sterner, O. Synthesis of the Bioactive Benzochromenes Pulchrol and Pulchral, Metabolites. Eur. J. Org. Chem. 2014, 8, 1594–1596. doi:10.1002/ejoc.201301792.
  • Okasha, R.; Alblewi, F. F.; Afifi, T. H.; Naqvi, A.; Fouda, A. M.; Al-Dies, A. M.; El-Agrody, A. M. Design of New Benzo[h]Chromene Derivatives: Antitumor Activities and Structure-Activity Relationships of the 2,3-Positions and Fused Rings at the 2,3-Positions. Molecules 2017, 22, 479–418. doi:10.3390/molecules22030479.
  • Reddy, B. V. S.; Divya, B.; Swain, M.; Rao, T. P.; Yadav, J. S.; Vishnu Vardhan, M. V. P. S. Adomino Knoevenagel Hetero-Diels-Alder Reaction for the Synthesis of Polycyclic Chromene Derivatives and Evaluation of Their Cytotoxicity. Bioorg. Med. Chem. Lett. 2012, 22, 1995–1999. doi:10.1016/j.bmcl.2012.01.033.
  • Ahmed, H. E. A.; El-Nassag, M. A. A.; Hassan, A. H.; Okasha, R. M.; Ihmaid, S.; Fouda, A. M.; Afifi, T. H.; Aljuhani, A.; El-Agrody, A. M. Introducing Novel Potent Anticancer Agents of 1H-Benzo[f]Chromene Scaffolds, Targeting C-Src Kinase Enzyme with MDA-MB-231 Cellline anti-Invasion Effects. J. Enzy. Inhib. Med. Chem. 2018, 33, 1074–1088. doi:10.1080/14756366.2018.1476503.
  • Afifi, T. H.; Okasha, R. M.; Alsherif, H. Design, Synthesis and Docking Studies of 4H-Chromene and Chromene Based Azo Chromphores: A Novel Series of Potent Antimicrobial and Anticancer Agents. Curr. Org. Synth. 2017, 14, 1–16.
  • Patil, S. A.; Patil, R.; Pfeffer, L. M.; Miller, D. D. Chromenes: Potential New Chemotherapeutic Agents for Cancer. Fut. Med. Chem. 2013, 5, 1647–1660. doi:10.4155/fmc.13.126.
  • Fadda, A. A.; Berghot, M. A.; Amer, F. A.; Badawy, D. S.; Bayoumy, N. M. Synthesis, Antioxidant and Antitumor Activity of Novel Pyridine, Chromene, Thiophene and Thiazole Derivatives. Arch. Pharm. Pharm. Med. Chem. 2012, 345, 378–385. doi:10.1002/ardp.201100335.
  • Nareshkumar, J.; Jiayi, Y.; Ramesh, M. K.; Fuyong, D.; Guo, J. Z.; Emmanuel, P. Identification and Structure-Activity Relationships of Chromene-Derived Selective Estrogen Receptor Modulators for Treatment of Postmenopausal Symptoms. J. Med. Chem. 2009, 52, 7544–7569. doi:10.1021/jm900146e.
  • Kasibhatia, S.; Gourdeau, H.; Meerovitch, K. Discovery and Mechanism of Action of a Novel Series of Apoplosis Inducers with Potential Vascular Targeting Activity. Mol. Cancer Ther. 2004, 3, 1365–1374.
  • Foroumadi, A.; Emami, S.; Sorkhi, M.; Nakhjiri, M.; Nazarian, Z.; Heydari, S.; Ardestani, S. K.; Poorrajab, F.; Shafiee, A. Chromene-Based Synthetic Chalconesas Potent Antileishmanial Agents: Synthesis and Biological Activity. Chem. Biol. Drug. Des. 2010, 75, 590–596. doi:10.1111/j.1747-0285.2010.00959.x.
  • Ali, T. E.; Ibrahim, M. A. Synthesis and Antimicrobial Activity of Chromene-Linked 2-Pyridione Fused with 1,2,4-Triazoles, 1,2,4-Triazines and 1,2,4-Triazepines Ring Systems. J. Braz. Chem. Soc. 2010, 21, 1007–1016. doi:10.1590/S0103-50532010000600010.
  • Yoo, S. J.; Kim, H. O.; Lim, Y.; Kim, J.; Jeong, L. S. Synthesis of Novel (2R,4R) and (2S, 4S)-Isodideoxy Nucleosides with Exocyclic Methylene as Potential Antiviral Agents. Bioorg. Med. Chem. 2002, 10, 215–226. doi:10.1016/S0968-0896(01)00266-8.
  • Hossan, A. S. M.; Abu Melha, H. M.; Al-Omar, M. A.; Amer Ael, G. Synthesis and Antimicrobial Activity of Some New Pyrimidine and Oxazinone Derivatives Fused with Thiophene Rings 2-Chloro-6-Ethoxy-4-Acetylpyridine as Startingmaterial. Molecules 2012, 17, 13642–13655. doi:10.3390/molecules171113642.
  • El-Sayed, W. A.; Abbas, H.-A. S.; Abdel Mageid, R. E.; Magdziarz, T. Synthesis, Antimicrobial Activity and Docking Studies of New 3-(Pyrimidin-4-yl)1q-H-Indol Derivatives and Their Derived N-, S-Glycoside Analogs. Med. Chem. Res. 2016, 25, 339–355.
  • Hafez, H. N.; El-Gazzar, A.-R. B. A. Synthesis and Antitumor Activity of Substituted Triazolo[4,3-a]Pyrimidin-6-Sulfonamide with an Incorporated Thiazolidinone Moiety. Bioorg. Med. Chem. Lett. 2009, 19, 4143–4147. doi:10.1016/j.bmcl.2009.05.126.
  • Zhao, X. L.; Zhao, Y. F.; Guo, S. C.; Song, H. S.; Wang, D.; Gong, P. Synthesis and anti-Tumor Activities of Novel [1,2,4]Triazolo[1,5-a]Pyrimidines. Molecules 2007, 12, 1136–1146. doi:10.3390/12051136.
  • EL-Sayed, W. A.; Mohamed, A. M.; Khalaf, H. S.; El-Kady, D. S.; Al- Manawaty, M. Synthesis, Docking Studies and Anticancer Activity of New Substituted Pyrimidine and Triazolopyrimidine Glycosides. J. Appl. Pharm. Sci. 2017, 7, 1–11.
  • Hassan, G. S.; EL-Sherbeny, M. A.; EL-Ashmawy, M. B.; Bayomi, S. M.; Maarrouf, A. R.; Badria, F. A. Synthesis and Antitumor Testing of Certain New Fused Triazolopyrimidine and Triazoloquinazoline Derivatives. Arab. J. Chem. 2017, 10, 51345–51355.
  • Zhang, N.; Ayral-Kaloustian, S.; Nguyen, T.; Afragola, J.; Hernandez, R.; Lucas, J.; Gibbons, J.; Beyer, C. Synthesis and SAR of [1,2,4]Triazolo[1,5-a]Pyrimidines, a Class of Anticancer Agents with Unique Mechanism of Tubulin Inhibition. J. Med. Chem. 2007, 50, 319–327. doi:10.1021/jm060717i.
  • Havlicek, L.; Fuksova, K.; Krystof, V.; Orsag, M.; Vojtesek, B.; Strnad, M. 8-Azapurines as New Inhibitors of Cyclin-Dependent Kinases. Bioorg. Med. Chem. 2005, 13, 5399–5407. doi:10.1016/j.bmc.2005.06.007.
  • Makosaza, M.; Fedorynski, M. Catalysts in Two Phase Systems: Phase Transfer and Related Phenomena. Advanc. Cat. 1987, 35, 375–422.
  • Makosza, M. Phase Transfer Catalyst: A General Green Methodology in Organic Synthesis. Pure Appl. Chem. 2000, 72, 1399–1403.
  • Feddorynski, M.; Jezierska-Zieba, M.; Kakol, B. Phase Transfer Catalysis in Pharmaceutical Industry –Where Are we? Acta. Polan. Pharma. 2008, 65, 647–654.
  • EL-Saghier, A. M. M. Simple One Pot Synthesis of Thieno[2,3-b]Thiophene Derivatives under Solid-Liquid PTC Conditions. Useful Starting Material for the Synthesis of Biological Active Compounds. Bull. Chem. Soc. Jap. 1993, 66, 2011–2015. doi:10.1246/bcsj.66.2011.
  • Du, T.; Li, Z.; Zheng, C.; Fang, G.; Yu, L.; Liu, J.; Zhao, G. Highly Enantioselective 1,3-Dipolar Cycloaddition of Imino Esters with Benzofuranone Derivatives Catalyzed by Thiourea-Quaternary Ammonium Salt. Tetrahedron 2018, 74, 7485–7494. doi:10.1016/j.tet.2018.11.025.
  • Wang, H. Chiral Phase-Transfer Catalysts with Hydrogen Bond a Powerful Tool in Asymmetric Synthesis. Catalysts 2019, 9, 1–34. doi:10.3390/catal9030244.
  • Abou-El-Regal, M. K.; Ali, A. T.; Youssef, A. S. A.; Hemdan, M. M.; Samir, S. S.; Abou-EL-Magd, W. S. I. Synthesis and Antitumor Activity Evaluation of Some 1, 2,4 Triazine and Fused Triazine Derivatives. Synth. Commun. 2018, 48, 2347–2357. doi:10.1080/00397911.2018.1482350.
  • Abou-EL-Regal, M. K.; Abdalha, A. A.; EL-Kassaby, M. A.; Ali, A. T. Synthesis of Thiohydantion Derivatives under Phase Transfer Catalysis. Phosph. Sulf. Sil. Relat. Elem. 2007, 182, 845–851. doi:10.1080/10426500601062007.
  • Hekal, M. H.; Abu El-Azm, F. S. M. New Potential Antitumor Quinazolinones Derived from Dynamic 2-Undecyl Benzoxazinone: Synthesis and Cytotoxic Evaluation. Synth. Commun. 2018, 48, 2391–2402. doi:10.1080/00397911.2018.1490433.
  • Hekal, M. H.; Abu El-Azm, F. S. M.; H. A. Sallam, Synthesis, Spectral Characterization, and in Vitro Biological Evaluation of Some Novel Isoquinolinone-Based Heterocycles as Potential Antitumor Agents. J. Heterocyc. Chem. 2019, 56, 795–803. doi:10.1002/jhet.3448.
  • Abddel-Wahab, A. H. E. Synthesis, Reactions and Evaluation of Antimicrobial Activity of Some 4 (p-Halophenyl)-4H-Naphthopyran, Pyranopyrimdine. Pharma 2012, 5, 745–757.
  • Gewald, K. Reaction of Malononitrile with α-Aminoketones. Z. Chem. 1961, 1, 349.
  • Elshafei, A. K.; Ahmed, E. A.; Abd El-Raheem, E. M. M. Synthesis of Some New Fused and Spiroheterocyclic Compounds under Phase Catalysis (PTC) Conditions. Egypt. J. Chem. 2015, 58, 485–494.
  • Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Meth. 1983, 65, 55–63. doi:10.1016/0022-1759(83)90303-4.
  • Denizot, F.; Lang, R. Rapid Colorimetric Assay for Cell Growth and Survival: Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. J. Immunol. Meth. 1986, 89, 271–277. doi:10.1016/0022-1759(86)90368-6.
  • Mauceri, H. J.; Hanna, N. N.; Beckett, M. A.; Gorski, D. H.; Staba, M.-J.; Stellato, K. A.; Bigelow, K.; Heimann, R.; Gately, S.; Dhanabal, M.; et al. Combined Effects of Angiostatin and Ionizing Radiation in Antitumor Therapy. Nature 1998, 394, 287–291. doi:10.1038/28412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.