Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 10
1,483
Views
8
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Microwave-assisted synthesis of α-aminophosphonates with sterically demanding α-aryl substituents

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1446-1455 | Received 11 Sep 2019, Published online: 11 Mar 2020

References

  • Kukhar, V. P.; Hudson, H. R. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity, Wiley, Chichester, 2000. ISBN:0-471-89149-5.
  • Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. DOI: 10.1021/jm200587f.
  • Hudson, H. R.; Lee, R. J. A Brief Review of the Anticancer Activity of α-Aminophosphonic Acid Derivatives and a Report on the in Vitro Activity of Some Dialkyl α-Aryl-(or Heteroaryl)-α-(Diphenylmethylamino)Methanephosphonates. Phosphorus, Sulfur Silicon Relat. Elem. 2014, 189, 1149–1155. DOI: 10.1080/10426507.2014.905781.
  • Tajti, Á.; Keglevich, G. The Importance of Organophosphorus Compounds as Biologically Active Agents. In Organophosphorus Chemistry, Keglevich, G. Ed.; de Gruyter, Berlin, 2018; pp 53–65.
  • Kabachnik, M. I.; Medved, T. Y. New Synthesis of Aminophosphonic Acids. Dokl. Akad. Nauk SSSR 1952, 83, 689–692.
  • Fields, E. K. The Synthesis of Esters of Substituted Amino Phosphonic Acids. J. Am. Chem. Soc. 1952, 74, 1528–1531. DOI: 10.1021/ja01126a054.
  • Cherkasov, R. A.; Galkin, V. I. The Kabachnik–Fields Reaction: synthetic Potential and the Problem of the Mechanism. Russ. Chem. Rev. 1998, 67, 857–882. DOI: 10.1070/RC1998v067n10ABEH000421.
  • Zefirov, N. S.; Matveeva, E. D. Catalytic Kabachnik-Fields Reaction: New Horizons for Old Reaction. Arkivoc 2008, 1–17. DOI: 10.3998/ark.5550190.0009.101.
  • Keglevich, G.; Bálint, E. The Kabachnik–Fields Reaction: Mechanism and Synthetic Use. Molecules 2012, 17, 12821–12835. DOI: 10.3390/molecules171112821.
  • Pudovik, A. N. Addition of Dialkyl Phosphites to Unsaturated Compounds. A New Method of Synthesis of β-Keto Phosphonic and Unsaturated α-Hydroxyphosphonic Esters. Dokl. Akad. Nauk SSSR 1950, 73, 499–502.
  • Pudovik, A. N. Addition of Dialkyl Phosphites to Imines. New Method of Synthesis of Esters of Amino Phosphonic Acids. Dokl. Akad. Nauk SSSR 1952, 83, 865–868.
  • Ali, T. E.; Abdel-Kariem, S. M. Methods for the Synthesis of α-Heterocyclic/Heteroaryl-α-Aminophosphonic Acids and Their Esters. Arkivoc 2015, 246–287. DOI: 10.3998/ark.5550190.p009.112.
  • Ali, T. E.; Abdel-Kariem, S. M. Methods for Synthesis of N-Heterocyclyl/Heteroaryl-α-Aminophosphonates and α-(Azaheterocyclyl)Phosphonates. Arkivoc 2016, 183–211. DOI: 10.3998/ark.5550190.p009.519.
  • Bálint, E.; Tajti, Á.; Tripolszky, A. Synthesis of α-Aminophosphonates by the Kabachnik–Fields reaction and by the Pudovik reaction. In Organophosphorus Chemistry, Keglevich, G., Ed.; de Gruyter: Berlin, 2018; pp 108–147. DOI: 10.1515/9783110535839-006.
  • Kafarski, P.; Górniak, M. G.; Andrasiak, I. Kabachnik-Fields Reaction under Green Conditions—A Critical Overview. Curr. Green Chem. 2015, 5, 218–222. DOI: 10.2174/2213346102666150109203606.
  • Keglevich, G.; Szekrényi, A. Eco-Friendly Accomplishment of the Extended Kabachnik–Fields Reaction; a Solvent- and Catalyst-Free Microwave-Assisted Synthesis of α-Aminophosphonates and α-Aminophosphine Oxides. Lett. Org. Chem. 2008, 5, 616–622. DOI: 10.2174/157017808786857598.
  • Tibhe, G. D.; Reyes-Gonzales, M. A.; Cativiela, C.; Ordóñez, M. Microwave-Assisted High Diastereoselective Synthesis of α-Aminophosphonates under Solvent and Catalyst Free-Conditions. J. Mex. Chem. Soc. 2012, 56, 183–187. DOI: 10.29356/jmcs.v56i2.319.
  • Bálint, E.; Tajti, Á.; Ádám, A.; Csontos, I.; Karaghiosoff, K.; Czugler, M.; Ábrányi-Balogh, P.; Keglevich, G. The Synthesis of α-Aryl-α-Aminophosphonates and α-Aryl-α-Aminophosphine Oxides by the Microwave-Assisted Pudovik Reaction. Beilstein J. Org. Chem. 2017, 13, 76–86. DOI: 10.3762/bjoc.13.10.
  • McOmie, J. F. W. Protective Groups in Organic Chemistry; Plenum Press: London, 1973. DOI: 10.1007/978-1-4684-7218-9.
  • Takahashi, D.; Yano, T.; Fukui, T. Novel diphenylmethyl-Derived Amide Protecting Group for Efficient Liquid-Phase Peptide Synthesis: AJIPHASE. Org. Lett. 2012, 14, 4514–4517. DOI: 10.1021/ol302002g.
  • Saudi, M.; van Aerschot, A. A Straightforward Diphenylmethyl Protection Method and Deprotection of Some Pyrimidine Nucleosides. Molecules 2013, 18, 8524–8534. DOI: 10.3390/molecules18078524.
  • Yadav, J. S.; Reddy, B. V. S.; Madan, C. Montmorillonite Clay-Catalyzed One-Pot Synthesis of α-Amino Phosphonates. Synlett 2001, 2001, 1131–1133. DOI: 10.1055/s-2001-15162.
  • Manabe, K.; Kobayashi, S. Facile Synthesis of α-Amino Phosphonates in Water Using a Lewis Acid–Surfactant-Combined Catalyst. Chem. Commun. 2000, 669–670. DOI: 10.1039/b000319k.
  • Ordonez, M.; Tibhe, G. D.; Zamudio-Medina, A.; Viveros-Ceballos, J. L. An Easy Approach for the Synthesis of N-Substituted Isoindolin-1-Ones. Synthesis 2012, 44, 569–574. DOI: 10.1055/s-0031-1289680.
  • Hudson, H. R.; Lee, R. J.; Matthews, R. W. 1-Amino-1-Aryl- and 1-Amino-1-Heteroaryl-Methanephosphonic Acids and Their N-Benzhydryl-Protected Diethyl Esters: Preparation and Characterization. Phosphorus, Sulfur Silicon Relat. Elem 2004, 179, 1691–1709. DOI: 10.1080/10426500490466274.
  • Hudson, H. R.; Czugler, M.; Lee, R. J.; Woodroffe, T. M. Extremely Short H···H Distances and Intermolecular Hydrogen-Bonding Patterns of Dialkyl α-Aryl-α-(Diphenylmethylamino)Methanephosphonates. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 469–477. DOI: 10.1080/10426507.2015.1091833.
  • Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0– New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. DOI: 10.1107/S0021889807067908.
  • Ermer, O.; Mason, S. A. Extremely Short Non-Bonded H … H Distance in Two Derivatives of Exo, Exo-Tetracyclo[6.2.1.13,6.02,7]Dodecane. J. Chem. Soc. Chem. Commun. 1983, 53–54. DOI: 10.1039/c39830000053.
  • Ermer, O.; Mason, S. A.; Anet, F. A. L.; Miura, S. S. Ultrashort Nonbonded Hydrogen…Hydrogen Distance in a Half-Cage Pentacyclododecane. J. Am. Chem. Soc. 1985, 107, 2330–2334. DOI: 10.1021/ja00294a023.
  • Matta, C. F.; Hernandez-Trujillo, J.; Tang, T.-H.; Bader, R. F. W. Hydrogen–Hydrogen Bonding: A Stabilizing Interaction in Molecules and Crystals. Chem. Eur. J. 2003, 9, 1940–1951. DOI: 10.1002/chem.200204626.
  • Bodige, S. G.; Sun, D.; Marchand, A. P.; Namboothiri, N. N.; Shukla, R.; Watson, W. H. Short H· · ·H Distances in Norbornene Derivatives. J. Chem. Crystallogr. 1999, 29, 523–530. DOI: 10.1023/A:1009584416307.
  • Wolstenholme, D. J.; Cameron, T. S. Comparative Study of Weak Interactions in Molecular Crystals: H − H Bonds vs Hydrogen Bonds. J. Phys. Chem. A 2006, 110, 8970–8978. DOI: 10.1021/jp061205i.
  • Paul, A.; Kubicki, M.; Jelsch, C.; Durand, P.; Lecomte, C. R-Free Factor and Experimental Charge-Density Analysis of 1-(2'-Aminophenyl)-2-Methyl-4-Nitroimidazole: A Crystal Structure with Z' = 2. Acta Crystallogr. B Struct. Sci. 2011, 67, 365–378. DOI: 10.1107/S0108768111022683.
  • Grabowski, S. J.; Pfitzner, A.; Zabel, M.; Dubis, A. T.; Palusiak, M. Intramolecular H···H Interactions for the Crystal Structures of [4-((E)-but-1-Enyl)-2,6-Dimethoxyphenyl]Pyridine-3-Carboxylate and [4-((E)-Pent-1-Enyl)-2,6-Dimethoxyphenyl]Pyridine-3-Carboxylate; DFT Calculations on Modeled Styrene Derivatives. J. Phys. Chem. B 2004, 108, 1831–1837. DOI: 10.1021/jp0351829.
  • Matta, C. F. Hydrogen–hydrogen bonding: the non-electrostatic limit of closed-shell interaction between two hydrogen atoms. A critical review. In Hydrogen Bonding—New Insight, (Challenges and Advances in Computational Chemistry and Physics Series), Grabowski, S., Ed.; Dordrecht: Springer, 2006; pp 337–375. DOI: 10.1007/978-1-4020-4853-1_9.
  • Hernández-Trujillo, J.; Matta, C. F. Hydrogen–Hydrogen Bonding in Biphenyl Revisited. Struct. Chem. 2007, 18, 849–857. DOI: 10.1007/s11224-007-9231-5.
  • Monteiro, N. K.; Firme, C. L. Hydrogen–Hydrogen Bonds in Highly Branched Alkanes and in Alkane Complexes: A DFT, ab Initio, QTAIM, and ELF Study. J. Phys. Chem. A 2014, 118, 1730–1740. DOI: 10.1021/jp500131z.
  • Lecomte, C.; Espinosa, E.; Matta, C. F. On Atom–Atom `Short Contact' Bonding Interactions in Crystals. IUCrJ 2015, 2, 161–163. DOI: 10.1107/S2052252515002067.