Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 2
469
Views
25
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Visible light-mediated photocatalytic bromination of 2-arylimidazo[1,2-a]pyridines using CBr4 as bromine source

, &
Pages 197-206 | Received 14 Oct 2019, Published online: 26 Nov 2019

References

  • (a) Enguehard-Gueiffier, C.; Gueiffier, A. Recent Progress in the Pharmacology of Imidazo[1,2-a]Pyridines. Mini Rev Med Chem. 2007, 7, 888. DOI: 10.2174/138955707781662645. (b) Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of Imidazo[1,2-a]Pyridines: A Decade Update . Chem. Commun. (Camb.) 2015, 51, 1555.DOI: 10.1039/c4cc08495k. (c) Pericherla, K.; Kaswan, P.; Pandey, K.; Kumar, A. Synthesis 2015, 47, 887. DOI: 10.1055/s-0034-1380182.
  • (a) Al-Tel, T. H.; Al-Qawasmeh, R. A.; Zaarour, R. Design, Synthesis and in Vitro Antimicrobial Evaluation of Novel Imidazo[1,2-a]Pyridine and Imidazo[2,1-b][1,3]Benzothiazole Motifs. Eur. J. Med. Chem. 2011, 46, 1874. DOI: 10.1016/j.ejmech.2011.02.051. (b) Shukla, N. M.; Salunke, D. B.; Yoo, E.; Mutz, C. A.; Balakrishna, R.; David, S. A. Antibacterial Activities of Groebke-Blackburn-Bienaymé-Derived Imidazo[1,2-a]Pyridin-3-Amines. Bioorg. Med. Chem. 2012, 20, 5850. DOI: 10.1016/j.bmc.2012.07.052.
  • (a) Fisher, M. H.; Lusi, A. Imidazo(1,2-a)Pyridine Anthelmintic and Antifungal Agents. J. Med. Chem. 1972, 15, 982. DOI: 10.1021/jm00279a026. (b) Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Antifungal Activity in Vitro of Some Imidazo[1,2-a]Pyrimidine Derivatives. Eur. J. Med. Chem. 1991, 26, 13. DOI: 10.1016/0223-5234(91)90208-5.
  • (a) Kaminski, J. J.; Doweyko, A. M. Antiulcer Agents. 6. Analysis of the in Vitro Biochemical and in Vivo Gastric Antisecretory Activity of Substituted Imidazo[1,2-a]Pyridines and Related Analogues Using Comparative Molecular Field Analysis and Hypothetical Active Site Lattice Methodologies. J. Med. Chem. 1997, 40, 427. DOI: 10.1021/jm950700s. (b) Rupert, K.; Rupert, J. R.; Dodd, J. H.; Wadsworth, S. A.; Cavender, D. E.; Olini, G. C.; Fahmy, B.; Siekierka, J. Imidazopyrimidines, Potent Inhibitors of p38 MAP Kinase. Bioorg. Med. Chem. Lett. 2003, 13, 347. DOI: 10.1016/S0960-894X(02)01020-X. (c) Lacerda, R. B.; Lacerda, C. K. F.; da Silva, L. L.; Romeiro, N. C.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. Discovery of Novel Analgesic and Anti-inflammatory 3-Arylamine-Imidazo[1,2-a]Pyridine Symbiotic Prototypes. Bioorg. Med. Chem. 2009, 17, 74. DOI: 10.1016/j.bmc.2008.11.018. (d) Chen, X.; Xu, W.; Wang, K.; Mo, M.; Zhang, W.; Du, L.; Yuan, X.; Xu, Y.; Wang, Y.; Shen, J. J. Discovery of a Novel Series of Imidazo[1,2-a]Pyrimidine Derivatives as Potent and Orally Bioavailable Lipoprotein-Associated Phospholipase a 2 Inhibitors. J. Med. Chem. 2015, 58, 8529. DOI: 10.1021/acs.jmedchem.5b01024.
  • (a) Kamal, A.; Reddy, J. S.; Ramaiah, M. J.; Dastagiri, D.; Bharathi, E. V.; Prem Sagar, M. V.; Pushpavalli, S. N. C. V. L.; Ray, P.; Pal-Bhadra, M. Design, Synthesis and Biological Evaluation of Imidazopyridine/Pyrimidine-Chalcone Derivatives as Potential Anticancer Agents. Med. Chem. Commun. 2010, 1, 355. DOI: 10.1039/c0md00116c. (b) Kim, O.; Jeong, Y.; Lee, H.; Hong, S.-S.; Hong, S. Design and Synthesis of Imidazopyridine Analogues as Inhibitors of Phosphoinositide 3-Kinase Signaling and Angiogenesis. J. Med. Chem. 2011, 54, 2455. DOI: 10.1021/jm101582z. (c) El-Sayed, W. M.; Hussin, W. A.; Al-Faiyz, Y. S.; Ismail, M. A. The Position of Imidazopyridine and Metabolic Activation Are Pivotal Factors in the Antimutagenic Activity of Novel Imidazo[1,2-a]Pyridine Derivatives. Eur. J. Pharmacol. 2013, 715, 212. DOI: 10.1016/j.ejphar.2013.05.018. (d) Gladysz, R.; Adriaenssens, Y.; De Winter, H.; Joossens, J.; Lambeir, A.-M.; Augustyns, K.; Van der Veken, P. Discovery and SAR of Novel and Selective Inhibitors of Urokinase Plasminogen Activator (uPA) with an Imidazo[1,2-a]Pyridine Scaffold. J. Med. Chem. 2015, 58, 9238. DOI: 10.1021/acs.jmedchem.5b01171.
  • (a) Hamdouchi, C.; Blas, J. D.; Prado, M. D.; Gruber, J. J.; Heinz, B. A.; Vance, L. J. 2-Amino-3-Substituted-6-[(E)-1-Phenyl-2-(N-Methylcarbamoyl)Vinyl]Imidazo[1,2-a]Pyridines as a Novel Class of Inhibitors of Human Rhinovirus: Stereospecific Synthesis and Antiviral Activity. J. Med. Chem. 1999, 42, 50. DOI: 10.1021/jm9810405. (b) Lhassani, M.; Chavignon, O.; Chezal, J. M.; Teulade, J. C.; Chapat, J. P.; Snoeck, R.; Andrei, G.; Balzarini, J.; Clercq, E. D.; Gueiffier, A. Synthesis and Antiviral Activity of Imidazo[1,2-a]Pyridines. Eur. J. Med. Chem 1999, 34, 271. DOI: 10.1016/S0223-5234(99)80061-0. (c) Vé Ron, J.-B.; Allouchi, H.; Enguehard-Gueiffier, C.; Snoeck, R.; Andrei, G.; De Clercq, E.; Gueiffier, A. Influence of 6- or 8-Substitution on the Antiviral Activity of 3-Arylalkylthiomethylimidazo[1,2-a]Pyridine Against Human Cytomegalovirus (CMV) and Varicella-Zoster Virus (VZV): Part II. Bioorg. Med. Chem. 2008, 16, 9536. DOI: 10.1016/j.bmc.2008.09.027. (d) Feng, S.; Hong, D.; Wang, B.; Zheng, X.; Miao, K.; Wang, L.; Yun, H.; Gao, L.; Zhao, S.; Shen, H. C. Discovery of Imidazopyridine Derivatives as Highly Potent Respiratory Syncytial Virus Fusion Inhibitors. ACS Med. Chem. Lett. 2015, 6, 359. DOI: 10.1021/acsmedchemlett.5b00008.
  • For recent selected examples for C-3 functionalization of imidazo[1,2-a] pyridines, see: (a) Kielesin´ Ski, Ł.; Tasior, M.; Gryko, D. T. Org. Chem. Front. 2015, 2, 21. DOI: 10.1039/C4QO00248B. (b) Ghosh, M.; Naskar, A.; Mitra, S.; Hajra, A. Palladium-Catalyzed α-Selective Alkenylation of Imidazo[1,2-a]Pyridines Through Aerobic Cross-Dehydrogenative Coupling Reaction. Eur. J. Org. Chem. 2015, 2015, 715. DOI: 10.1002/ejoc.201501152. (c) Shakoor, S. M. A.; Agarwal, D. S.; Kumar, A.; Sakhuja, R. Copper Catalyzed Direct Aerobic Double-Oxidative Cross-Dehydrogenative Coupling of Imidazoheterocycles with Aryl Acetaldehydes: An Articulate Approach for Dicarbonylation at C-3 Position. Tetrahedron 2016, 72, 645. DOI: 10.1016/j.tet.2015.12.012. (d) Samanta, S.; Mondal, S.; Santra, S.; Kibriya, G.; Hajra, A. FeCl3-Catalyzed Cross-Dehydrogenative Coupling Between Imidazoheterocycles and Oxoaldehydes. J. Org. Chem. 2016, 81, 10088. DOI: 10.1021/acs.joc.6b02091. (e) Gao, Y.; Lu, W.; Liu, P.; Sun, P. Iron-Catalyzed Regioselective Alkoxycarbonylation of Imidazoheterocycles with Carbazates. J. Org. Chem. 2016, 81, 2482. DOI: 10.1021/acs.joc.6b00046. (f) Lei, S.; Mai, Y.; Yan, C.; Mao, J.; Cao, H. A Carbonylation Approach toward Activation of Csp2-H and Csp3-H Bonds: Cu-Catalyzed Regioselective Cross Coupling of Imidazo[1,2-a]Pyridines with Methyl Hetarenes. Org. Lett. 2016, 18, 3582. DOI: 10.1021/acs.orglett.6b01588. (g) Lu, S.; Zhu, X.; Li, K.; Guo, Y.-J.; Wang, M.-D.; Zhao, X.-M.; Hao, X.-Q.; Song, M.-P. Reactivity of p-Toluenesulfonylmethyl Isocyanide: Iron-Involved C–H Tosylmethylation of Imidazopyridines in Nontoxic Media. J. Org. Chem. 2016, 81, 8370. DOI: 10.1021/acs.joc.6b01552. (h) Zhu, M.; Han, X.; Fu, W.; Wang, Z.; Ji, B.; Hao, X.-Q.; Song, M.-P.; Xu, C. Regioselective 2,2,2-Trifluoroethylation of Imidazopyridines by Visible Light Photoredox Catalysis. J. Org. Chem. 2016, 81, 7282. DOI: 10.1021/acs.joc.6b00950. (i) Su, H.; Wang, L.; Rao, H.; Xu, H. Iron-Catalyzed Dehydrogenative sp3-sp2 Coupling via Direct Oxidative C-H Activation of Acetonitrile. Org. Lett. 2017, 19, 2226. DOI: 10.1021/acs.orglett.7b00678. (j) Mondal, S.; Samanta, S.; Singsardar, M.; Hajra, A. Aminomethylation of Imidazoheterocycles with Morpholine. Org. Lett. 2017, 19, 3751. DOI: 10.1021/acs.orglett.7b01594. (k) Mondal, S.; Samanta, S.; Jana, S.; Hajra, A. (Diacetoxy)iodobenzene-Mediated Oxidative C–H Amination of Imidazopyridines at Ambient Temperature. J. Org. Chem. 2017, 82, 4504. DOI: 10.1021/acs.joc.7b00564. (l) Guo, Y.-J.; Lu, S.; Tian, L.-L.; Huang, E.-L.; Hao, X.-Q.; Zhu, X.; Shao, T.; Song, M.-P. Iodine-Mediated Difunctionalization of Imidazopyridines with Sodium Sulfinates: Synthesis of Sulfones and Sulfides. J. Org. Chem. 2018, 83, 338. DOI: 10.1021/acs.joc.7b02734.
  • (a) Gudmundsson, K. S.; Williams, J. D.; Drach, J. C.; Townsend, L. B. Synthesis and Antiviral Activity of Novel Erythrofuranosyl Imidazo[1,2-a]Pyridine C-Nucleosides Constructed via Palladium Coupling of Iodoimidazo[1,2-a]Pyridines and Dihydrofuran. J. Med. Chem. 2003, 46, 1449. DOI: 10.1021/jm020339r. (b) Yu, Y.; Su, Z.; Cao, H. Strategies for Synthesis of Imidazo[1,2- a ]Pyridine Derivatives: Carbene Transformations or C−H Functionalizations. Chem. Rec. 2019, 19, 2105. DOI: 10.1002/tcr.201800168.
  • (a) Marhadour, S.; Bazin, M. A.; Marchand, P. An Efficient Access to 2,3-Diarylimidazo[1,2-a]Pyridines via Imidazo[1,2-a]Pyridin-2-yl Triflate Through a Suzuki Cross-Coupling Reaction-Direct Arylation Sequence. Tetrahedron Lett. 2012, 53, 297. DOI: 10.1016/j.tetlet.2011.11.015. (b) Zhou, X.; Yan, H.; Ma, C.; He, Y.; Li, Y.; Cao, J.; Yan, R.; Huang, G. Copper-Mediated Aerobic Oxidative Synthesis of 3-Bromo-imidazo[1,2-a]Pyridines with Pyridines and Enamides. J. Org. Chem. 2016, 81, 25. DOI: 10.1021/acs.joc.5b02384.
  • Li, J.; Tang, J.; Wu, Y.; He, Q.; Yu, Y. Transition-Metal-Free Regioselective C–H Halogenation of Imidazo[1,2-a]Pyridines: Sodium Chlorite/Bromite as the Halogen Source. RSC Adv. 2018, 8, 5058. DOI: 10.1039/C7RA12100H.
  • (a) Indukuri, D. R.; Potuganti, G. R.; Alla, M. Synlett 2019, 30, 1573. DOI: 10.1055/s-0037-1611856. (b) Katrun, P.; Kuhakarn, C. K2S2O8-Mediated Halogenation of 2-Arylimidazo[1,2-a]Pyridines Using Sodium Halides as the Halogen Sources. Tetrahedron Lett. 2019, 60, 989. DOI: 10.1016/j.tetlet.2019.03.008. (c) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. Sodium Salts (NaI/NaBr/NaCl) for the Halogenation of Imidazo-Fused Heterocycles. J. Org. Chem. 2019, 84, 792. DOI: 10.1021/acs.joc.8b02637. (d) Yuan, Y.; Yao, A.; Zheng, Y.; Gao, M.; Zhou, Z.; Qiao, J.; Hu, J.; Ye, B.; Zhao, J.; Wen, H.; Lei, A. Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution. Science 2019, 12, 293. DOI: 10.1016/j.isci.2019.01.017.
  • Zhou, Z.; Yuan, Y.; Cao, Y.; Qiao, J.; Yao, A.; Zhao, J.; Zuo, W.; Chen, W.; Lei, A. Synergy of Anodic Oxidation and Cathodic Reduction Leads to Electrochemical C—H Halogenation. Chin. J. Chem. 2019, 37, 611. DOI: 10.1002/cjoc.201900091.
  • For representative recent reviews for photocatalysis, see: (a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035. DOI: 10.1021/acs.chemrev.6b00018. (b) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81, 6898. DOI: 10.1021/acs.joc.6b01449. (c) Ravelli, D.; Protti, S.; Fagnoni, M. Carbon-Carbon Bond Forming Reactions via Photogenerated Intermediates. Chem. Rev. 2016, 116, 9850. DOI: 10.1021/acs.chemrev.5b00662. (d) Kärkäs, M. D.; Porco, J. A.; Stephenson, C. R. J. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev. 2016, 116, 9683. DOI: 10.1021/acs.chemrev.5b00760. (e) Garbarino, S.; Ravelli, D.; Protti, S.; Basso, A. Photoinduced Multicomponent Reactions. Angew. Chem. Int. Ed. Engl. 2016, 55, 15476. DOI: 10.1002/anie.201605288. (f) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS. Catal. 2017, 7, 2564. (g) Bogdos, M. K.; Pinard, E.; Murphy, J. A. Applications of Organocatalysed Visible-Light Photoredox Reactions for Medicinal Chemistry. Beilstein J. Org. Chem. 2018, 14, 2035. DOI: 10.3762/bjoc.14.179.
  • For a selection of our recent works on C-H activation, see: (a) Kang, Y. K.; Kim, S. M.; Kim, D. Y. Enantioselective Organocatalytic C-H Bond Functionalization via Tandem 1,5-Hydride Transfer/Ring Closure: Asymmetric Synthesis of Tetrahydroquinolines. J. Am. Chem. Soc. 2010, 132, 11847. DOI: 10.1021/ja103786c. (b) Kang, Y. K.; Kim, D. Y. Asymmetric Synthesis of Tetrahydroquinolines via 1,5-Hydride Transfer/Cyclization Catalyzed by Chiral Primary Amine Catalysts. Adv. Synth. Catal. 2013, 355, 3131. DOI: 10.1002/adsc.201300398. (c) Suh, C. W.; Woo, S. B.; Kim, D. Y. Asymmetric Synthesis of Tetrahydroquinolines via Saegusa-Type Oxidative Enamine Catalysis/1,5-Hydride Transfer/Cyclization Sequences. Asian J. Org. Chem. 2014, 3, 399. DOI: 10.1002/ajoc.201400022. (d) Kang, Y. K.; Kim, D. Y. Enantioselective Organocatalytic Oxidative Enamine Catalysis-1,5-Hydride Transfer-Cyclization Sequences: Asymmetric Synthesis of Tetrahydroquinolines. Chem. Commun. (Camb.) 2014, 50, 222. DOI: 10.1039/c3cc46710d. (e) Suh, C. W.; Kim, D. Y. Enantioselective One-Pot Synthesis of Ring-Fused Tetrahydroquinolines via Aerobic Oxidation and 1,5-Hydride Transfer/Cyclization Sequences. Org. Lett. 2014, 16, 5374. DOI: 10.1021/ol502575f. (f) Kwon, S. J.; Kim, D. Y. Organo- and Organometallic-Catalytic Intramolecular [1,5]-Hydride Transfer/Cyclization Process through C(sp(3))-H Bond Activation. Chem. Rec. 2016, 16, 1191. DOI: 10.1002/tcr.201600003. (g) Suh, C. W.; Kwon, S. J.; Kim, D. Y. Synthesis of Ring-Fused 1-Benzazepines via [1,5]-Hydride Shift/7-Endo Cyclization Sequences. Org. Lett. 2017, 19, 1334. DOI: 10.1021/acs.orglett.7b00184. (h) Jeong, H. J.; Kim, D. Y. Enantioselective Decarboxylative Alkylation of β-Keto Acids to ortho-Quinone Methides as Reactive Intermediates: Asymmetric Synthesis of 2,4-Diaryl-1-benzopyrans. Org. Lett. 2018, 20, 2944. DOI: 10.1021/acs.orglett.8b00993.
  • For a selection of our recent works on photoredox reactions, see: (a) Kwon, S. J.; Kim, D. Y. Org. Lett. 2016, 16, 4562. DOI: 10.1021/acs.orglett.6b02201. (b) Kwon, S. J.; Kim, Y. J.; Kim, D. Y. Visible Light Photoredox-Catalyzed Alkylation/Ring Expansion Sequences of 1-(1-Arylvinyl)Cyclobutanol Derivatives. Tetrahedron Lett. 2016, 57, 4371. DOI: 10.1016/j.tetlet.2016.08.047. (c) Kwon, S. J.; Gil, M. K.; Kim, D. Y. Visible Light Mediated Photocatalytic Oxidative Coupling Reaction of N-Phenyl Tetrahydroisoquinoline with β-Keto Acids. Tetrahedron Lett. 2017, 58, 1592. DOI: 10.1016/j.tetlet.2017.03.026. (d) Kim, Y. J.; Kim, D. Y. Visible Light Photoredox-Catalyzed Difluoromethylation and Ring Expansion of 1-(1-Arylvinyl)Cyclobutanols. J. Fluorine Chem. 2018, 211, 119. DOI: 10.1016/j.jfluchem.2018.04.015. (e) Kim, Y.; Kim, D. Y. Visible Light Photoredox-Catalyzed Phosphorylation of Quinoxalin-2(1H)-Ones. Tetrahedron Lett. 2018, 59, 2443. DOI: 10.1016/j.tetlet.2018.05.034. (f) Kwon, S. J.; Jung, H. I.; Kim, D. Y. Visible Light Photoredox‐Catalyzed Arylation of Quinoxalin‐2(1 H)‐Ones with Aryldiazonium Salts. ChemistrySelect 2018, 3, 5824. DOI: 10.1002/slct.201801431. (g) Jong, H. I.; Lee, J. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2018, 39, 1003. DOI: 10.1002/bkcs.11550. (h) Jong, H. I.; Kim, D. Y. Synlet 2019, 30, 1361.
  • Zhao, Y.; Li, Z.; Yang, C.; Lin, R.; Xia, W. Visible-light photoredox catalysis enabled bromination of phenols and alkenes. Beilstein J Org Chem. 2014, 10, 622. DOI: 10.3762/bjoc.10.53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.