Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 3
514
Views
5
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Highly efficient green synthesis of the photochromic spironaphthoxazines using an eco-friendly choline hydroxide catalyst

ORCID Icon & ORCID Icon
Pages 338-347 | Received 06 Oct 2019, Published online: 28 Nov 2019

References

  • Li, Y.; Wong, K. M. C.; Tam, A. Y. Y.; Wu, L.; Yam, V. W. W. Thermo- and Acid-Responsive Photochromic Spironaphthoxazine Containing Organogelators. Chem. Eur. J. 2010, 16, 8690–8698. DOI: 10.1002/chem.201000150.
  • Berkovic, G.; Krongauz, V.; Weiss, V. Spiropyrans and Spirooxazines for Memories and Switches. Chem. Rev. 2000, 100, 1741–1754. DOI: 10.1021/cr9800715.
  • Azizi, N.; Edrisi, M. Biodegradable Choline Hydroxide Promoted Environmentally Benign Thiolysis of Epoxides. Tetrahedron Lett. 2016, 57, 525–528. DOI: 10.1016/j.tetlet.2015.12.080.
  • Kol’tsova, L. S.; Zaichenko, N. L.; Shiyonok, A. I.; Marevtsev, V. S. Merocyanine Form of Photochromic Spirooxazines in Acid Solutions. Russ. Chem. Bull. 2001, 50, 1214–1217. DOI: 10.1023/A:1014098505092.
  • Harada, J.; Kawazoe, Y.; Ogawa, K. Photochromism of Spiropyrans and Spirooxazines in the Solid State: Low Temperature Enhances Photocoloration. Chem. Commun. 2010, 46, 2593–2595. DOI: 10.1039/b925514a.
  • Xiong, Y.; Vargas Jentzsch, A.; Osterrieth, J. W. M.; Sezgin, E.; Sazanovich, I.; V; Reglinski, K.; Galiani, S.; Parker, A. W.; Eggeling, C.; Anderson, H. L. Spironaphthoxazine Switchable Dyes for Biological Imaging. Chem. Sci. 2018, 9, 3029–3040. DOI: 10.1039/C8SC00130H.
  • Salemi-Delvaux, C.; Luccioni-Houze, B.; Baillet, G.; Giusti, G.; Guglielmetti, R. Effect of Photodegradation on the Thermal Bleaching Rate Constant of Photochromic Compounds in Spiro[Indoline-Pyran] and Spiro[Indoline-Oxazine] Series. J. Photochem. Photobiol. A Chem. 1995, 91, 223–232. DOI: 10.1016/1010-6030(95)04113-X.
  • Balmond, E. I.; Tautges, B. K.; Faulkner, A. L.; Or, V. W.; Hodur, B. M.; Shaw, J. T.; Louie, A. Y. Comparative Evaluation of Substituent Effect on the Photochromic Properties of Spiropyrans and Spirooxazines. J. Org. Chem. 2016, 81, 8744–8758. DOI: 10.1021/acs.joc.6b01193.
  • Nigel Corns, S.; Partington, S. M.; Towns, A. D. Industrial Organic Photochromic Dyes. Color. Technol. 2009, 125, 249–261. DOI: 10.1111/j.1478-4408.2009.00204.x.
  • Fedorova, O. A.; Koshkin, A. V.; Gromov, S. P.; Strokach, Y. P.; Valova, T. M.; Alfimov, M. V.; Feofanov, A. V.; Alaverdian, I. S.; Lokshin, V. A.; Samat, A. Transformation of 6′-Aminosubstituted Spironaphthoxazines Induced by Pb(II) and Eu(III) Cations. J. Phys. Org. Chem. 2005, 18, 504–512. DOI: 10.1002/poc.890.
  • Lokshin, V.; Samat, A.; Guglielmetti, R. Synthesis of Photochromic Spirooxazines from 1-Amino-2-Naphthols. Tetrahedron. 1997, 53, 9669–9678. DOI: 10.1016/S0040-4020(97)00640-6.
  • Zhou, J.; Zhao, F.; Li, Y.; Zhang, F.; Song, X. A. Novel Chelation of Photochromic Spironaphthoxazines to Divalent Metal Ions. J. Photochem. Photobio. A: Chem. 1995, 92, 193–199. DOI: 10.1016/1010-6030(95)04136-0.
  • Mehraban, J. A.; Azizi, K.; Jalali, M. S.; Heydari, A. Choline Azide: New Reagent and Ionic Liquid in Catalyst-Free and Solvent-Free Synthesis of 5-Substituted-1H-Tetrazoles: A Triple Function Reagent. ChemistrySelect. 2018, 3, 116–121. DOI: 10.1002/slct.201702427.
  • Kalla, R. M. N.; Zhang, Y.; Kim, I. Highly Efficient Green Synthesis of α-Hydroxyphosphonates Using a Recyclable Choline Hydroxide Catalyst. New J. Chem. 2017, 41, 5373–5379. DOI: 10.1039/C6NJ03948K.
  • Siddalingamurthy, E.; Mahadevan, K. M.; Shrungesh Kumar, T. O. Choline Chloride/Urea Ionic Liquid Catalyzed a Convenient One-Pot Synthesis of Indole-3-Propanamide Derivatives. Synth. Commun. 2013, 43, 3153–3162. DOI: 10.1080/00397911.2013.769601.
  • García-Suárez, E. J.; Menéndez-Vázquez, C.; García, A. B. Chemical Stability of Choline-Based Ionic Liquids Supported on Carbon Materials. J. Mol. Liq. 2012, 169, 37–42. DOI: 10.1016/j.molliq.2012.02.022.
  • Pargaonkar, J. G.; Patil, S. K.; Vajekar, S. N. Greener Route for the Synthesis of Photo- and Thermochromic Spiropyrans Using a Highly Efficient, Reusable, and Biocompatible Choline Hydroxide in an Aqueous Medium. Synth. Commun. 2018, 48, 208–215. DOI: 10.1080/00397911.2017.1395053.
  • Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. DOI: 10.1021/cr300162p.
  • Zhu, A.; Bai, S.; Li, L.; Wang, M.; Wang, J. Choline Hydroxide: An Efficient and Biocompatible Basic Catalyst for the Synthesis of Biscoumarins under Mild Conditions. Catal. Lett. 2015, 145, 1089–1093. DOI: 10.1007/s10562-015-1487-6.
  • Lu, W.; Ma, J.; Hu, J.; Zhang, Z.; Wu, C.; Han, B. Choline Hydroxide Promoted Chemical Fixation of CO2 to Quinazoline-2,4(1H,3H)-Diones in Water. RSC Adv. 2014, 4, 50993–50997. DOI: 10.1039/C4RA08551E.
  • Abello, S.; Medina, F.; Rodriguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. E.; Tichit, D.; Coq, B. Supported Choline Hydroxide (Ionic Liquid) as Heterogeneous Catalyst for Aldol Condensation Reactions. Chem. Commun. 2004, 9, 1096–1097. DOI: 10.1039/B401448K.
  • Vajekar, S. N.; Shankarling, G. S. Application of Fe3O4 @Silica Sulfuric Acid as AMagnetic Nanocatalyst for the Synthesis of Rhodamine Derivatives. ChemistrySelect 2018, 3, 5848–5852. DOI: 10.1002/slct.201801127.
  • Gayakwad, E. M.; Patil, V. V.; Shankarling, G. S. Metal-Free Oxidation of Aldehydes to Acids Using the 4Na2SO4·2H2O2·NaCl Adduct. Environ. Chem. Lett. 2017, 15, 459–465. DOI: 10.1007/s10311-017-0606-6.
  • Gayakwad, E. M.; Patil, V. V.; Shankarling, G. S. Amberlyst-15 Catalysed Oxidative Esterification of Aldehydes Using a H2O2 Trapped Oxidant as a Terminal Oxidant. New J. Chem. 2017, 41, 2695–2701. DOI: 10.1039/C6NJ03831J.
  • Gadilohar, B. L.; Deshpande, S. S.; Pinjari, D. V.; Shankarling, G. S. Concentrated Solar Radiation Aided Energy Efficient Protocol for Oxidation of Alcohol Using Biodegradable Task Specific Ionic Liquid-Choline Peroxydisulfate. Sol. Energy. 2016, 139, 328–336. DOI: 10.1016/j.solener.2016.09.044.
  • Ghorpade, P.; Gadilohar, B.; Pinjari, D.; Shinde, Y.; Shankarling, G. Concentrated Solar Radiation Enhanced One Pot Synthesis of DES and N-Phenyl Phthalimide. Sol. Energy. 2015, 122, 1354–1361. DOI: 10.1016/j.solener.2015.10.040.
  • Jarag, K. J.; Pinjari, D. V.; Pandit, A. B.; Shankarling, G. S. Synthesis of Chalcone (3-(4-Fluorophenyl)-1-(4-Methoxyphenyl)Prop-2-En-1-One): Advantage of Sonochemical Method over Conventional Method. Ultrason. Sonochem. 2011, 18, 617–623. DOI: 10.1016/j.ultsonch.2010.09.010.
  • Sanap, A. K.; Shankarling, G. S. Environmentally Benign Synthesis of 4-Aminoquinoline-2-Ones Using Recyclable Choline Hydroxide. New J. Chem. 2015, 39, 206–212. DOI: 10.1039/C4NJ01281J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.