Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 3
215
Views
4
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

One-pot synthesis of substituted dibenzoxazepinones and pyridobenzoxazepinones using octacarbonyldicobalt as an effective CO source

, , &
Pages 348-360 | Received 24 Oct 2019, Published online: 27 Nov 2019

References

  • Liégeois, J. F.; Rogister, F. A.; Bruhwyler, J.; Damas, J.; Nguyen, T. P.; Inarejos, M. O.; Chleide, E. M.; Mercier, M. G.; Delarge, J. E. Pyridobenzoxazepine and Pyridobenzothiazepine Derivatives as Potential Central Nervous System Agents: synthesis and Neurochemical Study. J. Med. Chem. 1994, 37, 519. DOI: 10.1021/jm00030a011.
  • (a) Liegeois, J.-F.; Eyrolles, L.; Ellenbroek, B. A.; Lejeune, C.; Carato, P.; Bruhwyler, J.; Geczy, J.; Damas, J.; Delarge, J. J. J. Med. Chem. 2002, 45, 5136. DOI: 10.1021/jm0104825. (b) Liegeois, J.-F.; Deville, M.; Dilly, S.; Lamy, C.; Mangin, F.; Resimont, M.; Tarazi, F. I. New Pyridobenzoxazepine Derivatives Derived from 5-(4-methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine (JL13): chemical synthesis and pharmacological evaluation . J. Med. Chem. 2012, 55, 1572. DOI: 10.1021/jm2013419. (c) Ellenbroek, B. A.; Liegeois, J.-F.; Bruhwyler, J.; Cools, A. R. Effects of JL13, a Pyridobenzoxazepine with Potential Atypical Antipsychotic Activity, in Animal Models for Schizophrenia. J. Pharmacol. Exp. Ther. 2001, 298, 386. (d) Ellenbroek, B. A.; Liegeois, J.-F. JL 13, an Atypical Antipsychotic: A Preclinical Review. CNS Drug Rev. 2003, 9, 41. DOI: 10.1111/j.1527-3458.2003.tb00243.x. (e) Liégeois, J. F.; Bruhwyler, J.; Damas, J.; Nguyen, T. P.; Chleide, E. M.; Mercier, M. G.; Rogister, F. A.; Delarge, J. E. New Pyridobenzodiazepine Derivatives as Potential Antipsychotics: synthesis and Neurochemical study. J. Med. Chem. 1993, 36, 2107. DOI: 10.1021/jm00067a009.
  • (a) Fiorentino, A.; D’Abrosca, B.; Pacifico, S.; Cefarelli, G.; Uzzo, P.; Monaco, P. Natural Dibenzoxazepinones from Leaves of Carex Distachya: Structural Elucidation and Radical Scavenging Activity. Bioorg. Med. Chem. Lett. 2007, 17, 636. DOI: 10.1016/j.bmcl.2006.11.002. (b) Liu, N.; Song, F.; Shang, F.; Huang, Y. Mycemycins a–E, New Dibenzoxazepinones Isolated from Two Different Streptomycetes. Y. Mar. Drugs. 2015, 13, 6247. DOI: 10.3390/md13106247.
  • Binaschi, M.; Boldetti, A.; Gianni, M.; Maggi, C. A.; Gensini, M.; Bigioni, M.; Parlani, M.; Giolitti, A.; Fratelli, M.; Valli, C.; et al. Antiproliferative and Differentiating Activities of a Novel Series of Histone Deacetylase inhibitors. ACS Med Chem Lett. 2010, 1, 411. DOI: 10.1021/ml1001163.
  • Smits, R. A.; Lim, H. D.; Stegink, B.; Bakker, R. A.; de Esch, I. J. P.; Leurs, R. Characterization of the Histamine H4 Receptor Binding Site. Part 1. Synthesis and Pharmacological Evaluation of Dibenzodiazepine derivatives. J. Med. Chem. 2006, 49, 4512. DOI: 10.1021/jm051008s.
  • Chakrabarti, J. K.; Hicks, T. A. 2-[10,11-Dihydro-11-Oxodibenz[b,f][1,4]Oxazepin-7 or 8-yl] Propanoic Acids as Potential anti-Inflammatory Agents. Eur. J. Med. Chem. 1987, 22, 161. DOI: 10.1016/0223-5234(87)90013-4.
  • Klunder, J. M.; Hargrave, K. D.; West, M. A.; Cullen, E.; Pal, K.; Behnke, M. L.; Kapadia, S. R.; McNeil, D. W.; Wu, J. C.; Chow, G. C.; Adams, J. Novel Non-nucleoside Inhibitors of HIV-1 Reverse Transcriptase. 2. Tricyclic Pyridobenzoxazepinones and Dibenzoxazepinones. J. Med. Chem. 1992, 35, 1887. DOI: 10.1021/jm00088a027.
  • Nagarajan, K.; David, J.; Kulkarni, Y. S.; Hendi, S. B.; Shenoy, S. J.; Upadhyaya, P. Eur. J. Med. Chem 1986, 21, 21.
  • Hollosy, F.; Valko, K.; Hersey, A.; Nunhuck, S.; Keri, G.; Bevan, C. Estimation of Volume of Distribution in Humans from High Throughput HPLC-based Measurements of Human Serum Albumin Binding and Immobilized Artificial Membrane Partitioning. J. Med. Chem. 2006, 49, 6958. DOI: 10.1021/jm050957i.
  • Liao, Y.; Venhuis, B. J.; Rodenhuis, N.; Timmerman, W.; Wikström, H.; Meier, E.; Bartoszyk, G. D.; Böttcher, H.; Seyfried, C. A.; Sundell, S. New (sulfonyloxy)piperazinyldibenzazepines as Potential Atypical Antipsychotics: Chemistry and Pharmacological Evaluation. J. Med. Chem. 1999, 42, 2235. DOI: 10.1021/jm991005d.
  • (a) Bruhwyler, J.; Liégeois, J.-F.; Bergman, J.; Carey, G.; Goudie, A.; Taylor, A.; Meltzer, H.; Delarge, J.; Géczy, J. Jl13, a Pyridobenzoxazepine Compound with Potential Atypical Antipsychotic Activity: A Review of Its Behavioural Properties. Pharmacol. Res 1997, 36, 255. DOI: 10.1006/phrs.1997.0231. (b) Invernizzi, R.; Garavaglia, C.; Samanin, R. Naunyn-Schmiedeberg's Arch. Pharmacol 2000, 361, 298. DOI: 10.1007/s002109900195. (c) Tarazi, F. I.; Moran-Gates, T.; Gardner, M. P.; Graulich, A.; Lamy, C.; Liegeois, J.-F. J. Mol. Neurosci. 2007, 32, 192. DOI: 10.1007/s12031-007-0034-3. (d) Capuano, B.; Crosby, I. T.; McRobb, F. M.; Taylor, D. A.; Vom, A.; Blessing, W. W. Prog. Neuropsychopharmacol. Biol. Psych. 2010, 34, 136. DOI: 10.1016/j.pnpbp.2009.10.014. (e) Casey, D. E.; Bruhwyler, J.; Delarge, J.; Géczy, J.; Liégeois, J.-F. The Behavioral Effects of Acute and Chronic JL 13, a Putative Antipsychotic, in Cebus Non-Human Primates. Psychopharmacology 2001, 157, 228. DOI: 10.1007/s002130100808. (f) Goudie, A. J.; Cole, J. C.; Sumnall, H. R. Behav. Pharmacol. 2007, 18, 9. DOI: 10.1097/FBP.0b013e328014138d.
  • (a) Nagarajan, K., Kulkarni, L.; Venkateswarlu, A.; Shah, R. Indian J. Chem 1974, 12, 258. (b) Ouyang, X.; Tamayo, N.; Kiselyov, A. S. Solid Support Synthesis of 2-Substituted Dibenz[b,f]Oxazepin-11(10H)-Onesvia SNAr Methodology on AMEBA Resin. Tetrahedron. 1999, 55, 2827. DOI: 10.1016/S0040-4020(99)00061-7. (c) Hone, N. D.; Salter, J. I.; Reader, J. C. Solid-Phase Synthesis of Dibenzoxazepinones. Tetrahedron Lett. 2003, 44, 8169. DOI: 10.1016/j.tetlet.2003.09.037.
  • (a) Samet, A. V.; Marshalkin, V. N.; Kislyi, K. A.; Chernysheva, N. B.; Strelenko, Y. A.; Semenov, V. V. Synthetic Utilization of Polynitroaromatic Compounds. 3. Preparation of Substituted dibenz[b,f][1,4]oxazepine-11(10H)-ones from 2,4,6-trinitrobenzoic Acid via Nucleophilic Displacement of Nitro Groups. J. Org. Chem. 2005, 70, 9371. DOI: 10.1021/jo051425c. (b) Samet, A. V.; Kislyi, K. A.; Marshalkin, V. N.; Semenov, V. V. Synthesis of Dibenzo[b,f][1,4]Oxazepin-11(10H)-Ones from 2-Nitrobenzoic Acids. Russ. Chem. Bull. 2006, 55, 549. DOI: 10.1007/s11172-006-0290-3.
  • Bunce, R. A.; Schammerhorn, J. E. Dibenzo-Fused Seven-Membered Nitrogen Heterocycles by a Tandem Reduction-Lactamization Reaction. J. Heterocycl. Chem. 2006, 43, 1031. DOI: 10.1002/jhet.5570430432.
  • (a) Ganguly, N. C.; Mondal, P.; Roy, S.; Mitra, P. Ligand-Free Copper-Catalyzed Efficient One-Pot Access of Benzo[b]Pyrido[3,2-f][1,4]Oxazepinones through O-heteroarylation-Smiles Rearrangement-Cyclization Cascade. RSC Adv. 2014, 4, 55640. DOI: 10.1039/C4RA11128A. (b) Zhang, Z.; Dai, Z.; Ma, X.; Liu, Y.; Ma, X.; Li, W.; Ma, C. Cu-Catalyzed One-Pot Synthesis of Fused Oxazepinone Derivatives via sp 2 C–H and O–H Cross-Dehydrogenative Coupling. Org. Chem. Front. 2016, 3, 799. DOI: 10.1039/C6QO00040A. (c) Liu, Y.; Chu, C.; Huang, A.; Zhan, C.; Ma, Y.; Ma, C. Regioselective Synthesis of Fused Oxazepinone Scaffolds through One-pot Smiles Rearrangement Tandem Reaction. ACS Comb Sci. 2011, 13, 547. DOI: 10.1021/co2001058.
  • (a) Lu, S.-M.; Intramolecular Carbonylation Reactions with Recyclable Palladium-Complexed Dendrimers on Silica: Synthesis of Oxygen, Nitrogen, or Sulfur-Containing Medium Ring Fused Heterocycles. J. Am. Chem. Soc. 2005, 127, 14776.; Alper, H. J. DOI: 10.1021/ja053650h. (b) Yang, Q.; Cao, H.; Robertson, A.; Alper, H. J. Synthesis of Dibenzo[b,f][1,4]oxazepin-11(10H)-ones via Intramolecular Cyclocarbonylation Reactions using PdI(2)/Cytop 292 as the Catalytic System. J. Org. Chem. 2010, 75, 6297. DOI: 10.1021/jo101312z.
  • Guo, X.; Zhang-Negrerie, D.; Yunfei, D. Iodine( Iii )-Mediated Construction of the Dibenzoxazepinone Skeleton from 2-(Aryloxy)Benzamides through Oxidative C–N Formation. RSC Adv. 2015, 5, 94732. DOI: 10.1039/C5RA20258B.
  • Jamsheena, V.; Mahesha, C. K.; Nibin, J. M.; Ravi, S. L. Metal-Free Diaryl Etherification of Tertiary Amines by Ortho-C(sp2)-H Functionalization for Synthesis of Dibenzoxazepines and -ones. Org. Lett. 2017, 19, 6614DOI: 10.1021/acs.orglett.7b03328.
  • (a) Shen, C.; Wu, X.-F. Palladium-Catalyzed Carbonylative Multicomponent Reactions. Chem. Eur. J. 2017, 23, 2973. DOI: 10.1002/chem.201603623. (b) Peng, J.-B.; Wu, F.-P.; Wu, X.-F. First-Row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. Chem. Rev. 2019, 119, 2090. DOI: 10.1021/acs.chemrev.8b00068. (c) Peng, J.-B.; Wu, X.-F. Ligand- and Solvent-Controlled Regio- and Chemodivergent Carbonylative Reactions. Angew. Chem. Int. Ed. 2018, 57, 1152. DOI: 10.1002/anie.201709807. (d) Li, Y.; Hu, Y.; Wu, X.-F. Non-Noble Metal-Catalysed Carbonylative Transformations. Chem. Soc. Rev. 2018, 47, 172. DOI: 10.1039/C7CS00529F. (e) Zhiping, Y.; Wang, Z.; Wu, X.-F. Chin. J. Org. Chem. 2019, 39, 573. DOI: 10.6023/cjoc201809004.
  • (a) Shen, C.; Neumann, H.; Wu, X.-F. Green Chem. 2015, 17, 2994. DOI: 10.1039/C5GC00427F. (b) Shen, C.; Wu, X.-F. Base-Regulated Tunable Synthesis of Pyridobenzoxazepinones and Pyridobenzoxazines. Catal. Sci. Technol. 2015, 5, 4433. DOI: 10.1039/C5CY00798D. (c) Shen, C.; Spannenberg, A.; Auer, M.; Wu, X.-F. Utilizing an Encapsulated Solution of Reagents to Achieve the Four-Component Synthesis of (Benzo)Thiophene Derivatives. Adv. Synth. Catal. 2017, 359, 941. DOI: 10.1002/adsc.201601343. (d) Shen, C.; Spannenberg, A.; Wu, X.-F. Palladium-Catalyzed Carbonylative Four-Component Synthesis of Thiochromenones: The Advantages of a Reagent Capsule. Angew. Chem. Int. Ed. Engl. 2016, 55, 5067. DOI: 10.1002/anie.201600953.
  • (a) Baburajan, P.; Elango, K. P. Co2(CO)8 as a Convenient in Situ CO Source for the Direct Synthesis of Benzamides from Aryl Halides (Br/I) via Aminocarbonylation. Tetrahedron Lett. 2014, 55, 1006. DOI: 10.1016/j.tetlet.2013.12.062. (b) Suresh, A. S.; Baburajan, P.; Ahmed, M. Convenient Method for the Synthesis of Phthalazinones via Carbonylation of 2-Bromobenzaldehyde Using Co2(CO)8 as a CO Source. Tetrahedron Lett. 2014, 55, 3482. DOI: 10.1016/j.tetlet.2014.04.082. (c) Baburajan, P.; Elango, K. P. One Pot Direct Synthesis of β-Ketoesters via Carbonylation of Aryl Halides Using Cobalt Carbonyl. Tetrahedron Lett. 2014, 55, 3525. DOI: 10.1016/j.tetlet.2014.04.087. (d) Suresh, A. S.; Baburajan, P.; Ahmed, M. Synthesis of Primary Amides by Aminocarbonylation of Aryl/Hetero Halides Using Non-Gaseous NH3 and CO Sources. Tetrahedron Lett. 2015, 56, 4864. DOI: 10.1016/j.tetlet.2015.06.054. (e) Baburajan, P.; Elango, K. P. One-Pot Direct Synthesis of Weinreb Amides from Aryl and Hetero Aryl Halides Using Co 2 (CO) 8 as an Effective CO Source under Conventional Thermal Heating. Synth. Commun. 2015, 45, 531. DOI: 10.1080/00397911.2014.974610.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.