Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 3
396
Views
16
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Silver-catalyzed monofluoromethylation of alkynoates with sodium monofluoroalkanesulfinate (CH2FSO2Na) to access 3-monofluoromethylated coumarins

, &
Pages 388-398 | Received 17 Oct 2019, Published online: 08 Dec 2019

References

  • Kennedy, R. O.; Thornes, R. D. Coumarins: Biology, Applications and Mode of Action; Wiley: New York, NY, 1997.
  • Barot, K. P.; Jain, S. V.; Kremer, L.; Singh, S.; Ghate, M. D. Recent Advances and Therapeutic Journey of Coumarins: Current Status and Perspectives. Med. Chem. Res. 2015, 24, 2771–2798. DOI: 10.1007/s00044-015-1350-8.
  • Musa, M. A.; Cooperwood, J. S.; Khan, M. A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer. Curr. Med. Chem. 2008, 15, 2664–2679. DOI: 10.2174/092986708786242877.
  • Yu, L.; Qian, R.; Deng, X.; Wang, F.; Xu, Q. Calcium-Catalyzed Reactions of element-H Bonds. Sci. Bull. 2018, 63, 1010–1016. DOI: 10.1016/j.scib.2018.06.002.
  • Yu, L.; Liu, M.; Chen, F.; Xu, Q. Heterocycles from Methylenecyclopropanes. Org. Biomol. Chem. 2015, 13, 8379–8392. DOI: 10.1039/C5OB00868A.
  • Sokkalingam, P.; Lee, C.-H. Highly Sensitive Fluorescence “Turn-On” Indicator for Fluoride Anion with Remarkable Selectivity in Organic and Aqueous Media. J. Org. Chem. 2011, 76, 3820–3828. DOI: 10.1021/jo200138t.
  • Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116, 422–518. DOI: 10.1021/acs.chemrev.5b00392.
  • Preshlock, S.; Tredwell, M.; Gouverneur, V. 18 F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem. Rev. 2016, 116, 719–766. DOI: 10.1021/acs.chemrev.5b00493.
  • Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V. A.; Coelho, J. A. S.; Toste, F. D. Modern Approaches for Asymmetric Construction of Carbon–Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem. Rev. 2018, 118, 3887–3964. DOI: 10.1021/acs.chemrev.7b00778.
  • Wang, F.; Chen, P.; Liu, G. Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations. Acc. Chem. Res. 2018, 51, 2036–2046. DOI: 10.1021/acs.accounts.8b00265.
  • Yerien, D. E.; Bonesi, S.; Postigo, A. Fluorination Methods in Drug Discovery. Org. Biomol. Chem. 2016, 14, 8398–8427. DOI: 10.1039/C6OB00764C.
  • Ni, F. C.; Hu, J. B. The Unique Fluorine Effects in Organic Reactions: Recent Facts and Insights into Fluoroalkylations. Chem. Soc. Rev. 2016, 45, 5441–5454. DOI: 10.1039/C6CS00351F.
  • Song, H. X.; Han, Q. Y.; Zhao, C. L.; Zhang, C. P. Fluoroalkylation Reactions in Aqueous Media: A Review. Green Chem. 2018, 20, 1662–1731. DOI: 10.1039/C8GC00078F.
  • Zhang, X.; Huang, P.; Li, Y.; Duan, C. A Mild and Fast Continuous-Flow Trifluoromethylation of Coumarins with the CF 3 Radical Derived from CF 3 so 2 Na and TBHP. Org. Biomol. Chem. 2015, 13, 10917–10922. DOI: 10.1039/C5OB01516B.
  • Sakamoto, R.; Kashiwagi, H.; Selvakumar, S.; Moteki, S. A.; Maruoka, K. Efficient Generation of Perfluoroalkyl Radicals from Sodium Perfluoroalkanesulfinates and a Hypervalent Iodine (III) Reagent: Mild, Metal-Free Synthesis of Perfluoroalkylated Organic Molecules. Org. Biomol. Chem. 2016, 14, 6417–6421. DOI: 10.1039/C6OB01245K.
  • Cao, X.-H.; Pan, X.; Zhou, P.-J.; Zou, J.-P.; Asekun, O. T. Manganese(III)-Mediated Direct Csp2-H Radical Trifluoromethylation of Coumarins with Sodium Trifluoromethanesulfinate. Chem. Commun. 2014, 50, 3359–3362. DOI: 10.1039/c3cc49689a.
  • Dai, P.; Yu, X.; Teng, P.; Zhang, W.-H.; Deng, C. Visible-Light- and Oxygen-Promoted Direct Csp2-H Radical Difluoromethylation of Coumarins and Antifungal Activities. Org. Lett. 2018, 20, 6901–6905. DOI: 10.1021/acs.orglett.8b02965.
  • Chaabouni, S.; Simonet, F.; François, A.; Abid, S.; Galaup, C.; Chassaing, S. 3-Trifluoromethylated Coumarins and Carbostyrils by Radical Trifluoromethylation of Ortho-Functionalized Cinnamic Esters. Eur. J. Org. Chem. 2017, 2017, 271–277. DOI: 10.1002/ejoc.201601181.
  • Dmowski, W.; Piasecka-Maciejewska, K. Preparation of 3-(Trifluoromelthyl)Coumarins. Org. Prep. Proced. Int. 2002, 34, 514–517. DOI: 10.1080/00304940209355771.
  • Augustine, J. K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An Efficient One-Pot Synthesis of Coumarins Mediated by Propylphosphonic Anhydride (T3P) via the Perkin Condensation. Tetrahedron Lett. 2012, 53, 4422–4425. DOI: 10.1016/j.tetlet.2012.06.037.
  • Moskvina, V. S.; Khily, V. P. Aryl Alkynoates in the Radical Synthesis of Coumarins. Chem. Heterocycl. Comp. 2019, 55, 300–306. DOI: 10.1007/s10593-019-02458-w.
  • Li, Y.; Lu, Y.; Qiu, G.; Ding, Q. Copper-Catalyzed Direct Trifluoromethylation of Propiolates: Construction of Trifluoromethylated Coumarins. Org. Lett. 2014, 16, 4240–4243. DOI: 10.1021/ol501939m.
  • Zhang, X.; Li, Y.; Hao, X.; Jin, K.; Zhang, R.; Duan, C. Recyclable Alkylated fac-Ir(Ppy)3 Complex as a Visible-Light Photoredox Catalyst for the Synthesis of 3-Trifluoromethylated and 3-Difluoroacetylated Coumarins. Tetrahedron 2018, 74, 7358–7363. DOI: 10.1016/j.tet.2018.10.075.
  • Chen, L.; Wu, L.; Duan, W.; Wang, T.; Li, L.; Zhang, K.; Zhu, J.; Peng, Z.; Xiong, F. Photoredox-Catalyzed Cascade Radical Cyclization of Ester Arylpropiolates with CF 3 so 2 Cl to Construct 3-Trifluoromethyl Coumarin Derivatives. J. Org. Chem. 2018, 83, 8607–8614. DOI: 10.1021/acs.joc.8b00581.
  • Bu, M.-J.; Lu, G.-P.; Cai, C. Visible-Light Photoredox Catalyzed Cyclization of Aryl Alkynoates for the Synthesis of Trifluoromethylated Coumarins. Catal. Commun. 2018, 114, 70–74. DOI: 10.1016/j.catcom.2018.06.009.
  • Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z.; Ji, B. Visible-Light-Mediated Radical Aryldifluoroacetylation of Alkynes with Ethyl Bromodifluoroacetate for the Synthesis of 3-Difluoroacetylated Coumarins. J. Org. Chem. 2015, 80, 4766–4770. DOI: 10.1021/acs.joc.5b00305.
  • Zhu, M.; Han, X.; Fu, W.; Wang, Z.; Ji, B.-M.; Hao, X.-Q.; Song, M.-P.; Xu, C. Regioselective 2,2,2-Trifluoroethylation of Imidazopyridines by Visible Light Photoredox Catalysis. J. Org. Chem. 2016, 81, 7282–7287. DOI: 10.1021/acs.joc.6b00950.
  • Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wang, H. Direct Radical Trifluoromethylthiolation and Thiocyanation of Aryl Alkynoate Esters: Mild and Facile Synthesis of 3-Trifluoromethylthiolated and 3-Thiocyanated Coumarins. Org. Chem. Front. 2015, 2, 1511–1515. DOI: 10.1039/C5QO00271K.
  • Ni, S.-Y.; Zhou, J.; Mei, H.-B.; Han, J.-L. Radical Reactions of Aryl Alkynoates in Organic Synthesis: Recent Advances. Tetrahedron Lett. 2018, 59, 1309–1316. DOI: 10.1016/j.tetlet.2018.02.055.
  • Wallin, R. F.; Regan, B. M.; Napoli, M. D.; Stern, I. J. Sevoflurane: A New Inhalational Anesthetic Agent. Anesth. Analg. 1975, 54, 758–766.
  • Hu, J.; Zhang, W.; Wang, F. Selective Difluoromethylation and Monofluoromethylation Reactions. Chem. Commun. 2009, 7465–7478. DOI: 10.1039/b916463d.
  • Doi, H.; Ban, I.; Nonoyama, A.; Sumi, K.; Kuang, C.; Hosoya, T.; Tsukada, H.; Suzuki, M. Palladium(0)-Mediated Rapid Methylation and Fluoromethylation on Carbon Frameworks by Reacting Methyl and Fluoromethyl Iodide with Aryl and Alkenyl Boronic Acid Esters: Useful for the Synthesis of [11C]CH3–C− and [18F]FCH2–C−Containing PET Tracers (PET = Positron Emission Tomography). Chem. Eur. J. 2009, 15, 4165–4171. DOI: 10.1002/chem.200801974.
  • An, L.; Xiao, Y.-L.; Min, Q. Q.; Zhang, X. Facile Access to Fluoromethylated Arenes by Nickel-Catalyzed Cross-Coupling between Arylboronic Acids and Fluoromethyl Bromide. Angew. Chem. Int. Ed. 2015, 54, 9079–9083. DOI: 10.1002/anie.201502882.
  • Hu, J.; Gao, B.; Li, L.; Ni, C.; Hu, J. Palladium-Catalyzed Monofluoromethylation of Arylboronic Esters with Fluoromethyl Iodide. Org. Lett. 2015, 17, 3086–3089. DOI: 10.1021/acs.orglett.5b01361.
  • Yin, H.; Sheng, J.; Zhang, K.-F.; Zhang, Z.-Q.; Bian, K.-J.; Wang, X.-S. Nickel-Catalyzed Monofluoromethylation of (Hetero)Aryl Bromides via Reductive Cross-Coupling. Chem. Commun. (Camb.) 2019, 55, 7635–7638. DOI: 10.1039/c9cc03737c.
  • Zhang, X.; Qiu, W.; Burton, D. J. The Preparation of (EtO)2P(O)CFHZnBr and (EtO)2P(O)CFHCu and Their Utility in the Preparation of Functionalized α-Fluorophosphonates. Tetrahedron Lett. 1999, 40, 2681–2684. DOI: 10.1016/S0040-4039(99)00305-6.
  • Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Rav, S.; Olah, G. A. Stereoselective Synthesis of Fluorobis(Phenylsulfonyl)Methyl-Substituted Alkenes Using Free Radical Fluoroalkylation. J. Fluorine Chem. 2008, 129, 1036–1040. DOI: 10.1016/j.jfluchem.2008.04.013.
  • Wu, Y.; Zhang, H.-R.; Cao, Y.-X.; Lan, Q.; Wang, X.-S. Nickel-Catalyzed Monofluoroalkylation of Arylsilanes via Hiyama Cross-Coupling. Org. Lett. 2016, 18, 5564–5567. DOI: 10.1021/acs.orglett.6b02803.
  • Zhao, Y.; Ni, C.; Jiang, F.; Gao, B.; Shen, X.; Hu, J. Copper-Catalyzed Debenzoylative Monofluoromethylation of Aryl Iodides Assisted by the Removable (2-Pyridyl)Sulfonyl Group. ACS Catal. 2013, 3, 631–634. DOI: 10.1021/cs4000574.
  • Zhu, M.; Fu, W.; Zou, G.; Xu, C.; Wang, Z. Visible-Light-Mediated Radical Difluoromethylenephosphonation of 2-Isocyanobiaryls with Bromodifluoromethylphosphonate for the Synthesis of 6-Difluoromethylenephosphonyl-Phenanthridines. J. Fluorine Chem. 2015, 180, 1–6. DOI: 10.1016/j.jfluchem.2015.07.028.
  • Su, Y. M.; Feng, G.-S.; Wang, Z.-Y.; Lan, Q.; Wang, X. S. Nickel-Catalyzed Monofluoromethylation of Aryl Boronic Acids. Angew. Chem. Int. Ed. 2015, 54, 6003–6007. DOI: 10.1002/anie.201412026.
  • Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah, G. A. Direct Electrophilic Monofluoromethylation. Org. Lett. 2008, 10, 557–560. DOI: 10.1021/ol702500u.
  • Nomura, Y.; Tokunaga, E.; Shibata, N. Inherent Oxygen Preference in Enolate Monofluoromethylation and a Synthetic Entry to Monofluoromethyl Ethers. Angew. Chem. Int. Ed. 2011, 50, 1885–1889. DOI: 10.1002/anie.201006218.
  • Ding, T.; Jiang, L.; Yang, J.; Xu, Y.; Wang, G.; Yi, W. Highly Carbon-Selective Monofluoromethylation of β-Ketoesters with Fluoromethyl Iodide. Org. Lett. 2019, 21, 6025–6028. DOI: 10.1021/acs.orglett.9b02175.
  • Liu, Y.; Lu, L.; Shen, Q. Monofluoromethyl-Substituted Sulfonium Ylides: Electrophilic Monofluoromethylating Reagents with Broad Substrate Scopes. Angew. Chem. Int. Ed. 2017, 56, 9930–9934. DOI: 10.1002/anie.201704175.
  • Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Radical Fluoroalkylation of Isocyanides with Fluorinated Sulfones by Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2016, 55, 2743–2747. DOI: 10.1002/anie.201510533.
  • Fang, J.; Shen, W.-G.; Ao, G.-Z.; Liu, F. Transition-Metal-Free Radical Fluoroalkylation of Isocyanides for the Synthesis of Tri-/di-/Monofluoromethylated Phenanthridines. Org. Chem. Front. 2017, 4, 2049–2053. DOI: 10.1039/C7QO00473G.
  • Shen, X.; Zhou, M.; Ni, C.; Zhang, W.; Hu, J. Direct Monofluoromethylation of O-, S-, N-, and P-Nucleophiles with PhSO(NTs)CH2F: The Accelerating Effect of α-Fluorine Substitution. Chem. Sci. 2014, 5, 117–122. DOI: 10.1039/C3SC51831K.
  • Tang, X.-J.; Dolbier, W. R. Jr., Efficient Cu-Catalyzed Atom Transfer Radical Addition Reactions of Fluoroalkylsulfonyl Chlorides with Electron-Deficient Alkenes Induced by Visible Light. Angew. Chem. Int. Ed. 2015, 54, 4246–4249. DOI: 10.1002/anie.201412199.
  • Zhu, M.; You, Q.; Li, R. Synthesis of CF2H-containing oxindoles via photoredox-catalyzed radical difluoromethylation and cyclization of N-arylacrylamides. J. Fluorine Chem. 2019, 228, 109391. DOI: 10.1016/j.jfluchem.2019.109391.
  • Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; et al. Practical and Innate Carbon–Hydrogen Functionalization of Heterocycles. Nature 2012, 492, 95–99. DOI: 10.1038/nature11680.
  • Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Jr., Photoredox-Catalyzed Tandem Radical Cyclization of N-Arylacrylamides: General Methods to Construct Fluorinated 3,3-Disubstituted 2-Oxindoles Using Fluoroalkylsulfonyl Chlorides. Org. Lett. 2014, 16, 4594–4597. DOI: 10.1021/ol502163f.
  • He, Z.; Tan, P.; Ni, C.; Hu, J. Fluoroalkylative Aryl Migration of Conjugated N -Arylsulfonylated Amides Using Easily Accessible Sodium Di- and Monofluoroalkanesulfinates. Org. Lett. 2015, 17, 1838–1841. DOI: 10.1021/acs.orglett.5b00308.
  • Noto, N.; Koike, T.; Akita, M. Visible-Light-Triggered Monofluoromethylation of Alkenes by Strongly Reducing 1,4-Bis(Diphenylamino)Naphthalene Photoredox Catalysis. ACS Catal. 2019, 9, 4382–4387. DOI: 10.1021/acscatal.9b00473.
  • Fu, W.; Han, X.; Zhu, M.; Xu, C.; Wang, Z.; Ji, B.; Hao, X.-Q.; Song, M.-P. Visible-Light-Mediated Radical Oxydifluoromethylation of Olefinic Amides for the Synthesis of CF 2 H-Containing Heterocycles. Chem. Commun. 2016, 52, 13413–13416. DOI: 10.1039/C6CC07771D.
  • Zhu, M.; Fun, W.; Guo, W.; Yun, T.; Wang, Z.; Xu, C.; Ji, B. Visible-Light-Induced Radical Di- and Trifluoromethylation of β, γ-Unsaturated Oximes: Synthesis of Di- and Trifluoromethylated Isoxazolines. Eur. J. Org. Chem. 2019, 2019, 1614–1619. DOI: 10.1002/ejoc.201801790.
  • Zhu, M.; Li, R.; You, Q.; Fu, W.; Guo, W. Synthesis of SCF 3-Containing Benzoxazines and Oxazolines via a Photoredox-Catalyzed Radical Trifluoromethylthiolation-Cyclization of Olefinic Amides. Asian J. Org. Chem. 2019, 8, 2002–2005. DOI: 10.1002/ajoc.201900499.
  • Yin, G.; Zhu, M.; Fu, W. Visible-Light-Induced Photocatalytic Difluoroacetylation of Imidazopyridines via Direct and Regioselective C–H Functionalization. J. Fluorine Chem. 2017, 199, 14–19. DOI: 10.1016/j.jfluchem.2017.04.005.
  • Yin, G.; Zhu, M.; Yang, G.; Wang, X.; Fu, W. Synthesis of Difluoromethylenephosphonated Oxindoles through Visible-Vight-Induced Radical Cyclization of N -Arylacrylamides. J. Fluorine Chem. 2016, 191, 63–69. DOI: 10.1016/j.jfluchem.2016.09.017.
  • Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z. Visible-Light-Mediated Radical Aryldifluoroacetylation of N-Arylacrylamides to Give Difluoroacetylated Oxindoles. Asian J. Org. Chem. 2014, 3, 1273–1276. DOI: 10.1002/ajoc.201402199.
  • Fu, W.; Zhu, M.; Xu, C.; Zou, G.; Wang, Z.; Ji, B. Visible-Light-Mediated Trifluoroethylation of 2-Isocyanobiaryl with Trifluoroethyl Iodide: Synthesis of 6-Trifluoroethyl-Phenanthridines. J. Fluorine Chem. 2014, 168, 50–54. DOI: 10.1016/j.jfluchem.2014.08.022.
  • Xu, P.; Guo, S.; Wang, L.; Tang, P. Silver-Catalyzed Oxidative Activation of Benzylic C–H Bonds for the Synthesis of Difluoromethylated Arenes. Angew. Chem. Int. Ed. 2014, 53, 5955–5958. DOI: 10.1002/anie.201400225.
  • 4b, CCDC ID: 1955685 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Centre via www.ccdc.ac.uk/data_request/cif.
  • Deng, X.; Chao, H.; Chen, C.; Zhou, H.; Yu, L. Organotellurium Catalysis-Enabled Utilization of Molecular Oxygen as Oxidant for Oxidative Deoximation Reactions under Solvent-Free Conditions. Sci. Bull. 2019, 64, 1280–1284. DOI: 10.1016/j.scib.2019.07.007.
  • Yu, L.; Huang, X. Reaction of Methylenecyclopropanes and Diphenyl Diselenide under Visible-Light Irradiation. Synlett 2006, 2006, 2136–2138. DOI: 10.1055/s-2006-948210.
  • Yu, L.; Huang, X.Copper(II) Acetate Mediated Reactions of Methylenecyclopropane and Diphenyl Diselenide. Synlett 2007, 2007, 1371–1374. DOI: 10.1055/s-2007-980361.
  • Liu, M.; Li, Y.; Yu, L.; Xu, Q.; Jiang, X. Visible Light-Promoted, Iodine-Catalyzed Selenoalkoxylation of Olefins with Diselenides and Alcohols in the Presence of Hydrogen Peroxide/Air Oxidant: An Efficient Access to α-Alkoxyl Selenides. Sci. China Chem. 2018, 61, 294–299. DOI: 10.1007/s11426-017-9158-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.