Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 5
333
Views
14
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Design, synthesis, anti-proliferative activity, and molecular docking studies of novel benzo[f]chromene, chromeno [2,3-d]pyrimidines and chromenotriazolo[1,5-c]pyrimidines

, , &
Pages 669-683 | Received 24 Apr 2019, Published online: 13 Jan 2020

References

  • Pereira, T. M.; Franco, D. P.; Vitorio, F.; Kummerle, A. E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Curr. Top. Med. Chem. 2018, 18, 124–148. DOI: 10.2174/1568026618666180329115523.
  • Srikrishna, D.; Godugu, C.; Dubey, P. K. A Review on Pharmacological Properties of Coumarins. Mini Rev. Med. Chem. 2018, 18, 113–141. DOI: 10.2174/1389557516666160801094919.
  • Emami, S.; Dadashpour, S. Current Developments of Coumarin-Based anti-Cancer Agents in Medicinal Chemistry. Eur. J. Med. Chem. 2015, 102, 611–630. DOI: 10.1016/j.ejmech.2015.08.033.
  • Ranganatha, V. L.; Zameer, F.; Meghashri, S.; Rekha, N. D.; Girish, V.; Gurupadaswamy, H. D.; Khanum, S. A. Design, Synthesis, and Anticancer Properties of Novel Benzophenone‐Conjugated Coumarin Analogs. Arch. Pharm. Chem. Life. Sci. 2013, 346, 901–911. DOI: 10.1002/ardp.201300298.
  • Kathrotiya, H. G.; Patel, M. P. Microwave-Assisted Synthesis of 3′-Indolyl Substituted 4H-Chromenes Catalyzed by DMAP and Their Antimicrobial Activity. Med. Chem. Res. 2012, 21, 3406–3416. DOI: 10.1007/s00044-011-9861-4.
  • Rapposelli, S.; Da Settimo, F.; Digiacomo, M.; La Motta, C.; Lapucci, A.; Sartini, S.; Vanni, M. Synthesis and Biological Evaluation of 2′-Oxo-2,3-Dihydro-3′H-Spiro[Chromene-4,5′-[1,3]Oxazolidin]-3′yl]Acetic Acid Derivatives as Aldose Reductase Inhibitors. Arch. Pharm. Pharm. Med. Chem. 2011, 344, 372–285. DOI: 10.1002/ardp.201000302.
  • Zhang, D.; Ma, Y.; Liu, Y.; Liu, Z.-P. Synthesis of Sulfonylhydrazone‐ and Acylhydrazone‐Substituted 8‐Ethoxy‐3‐Nitro‐2H‐Chromenes as Potent Antiproliferative and Apoptosis Inducing Agents. Arch. Pharm. Chem. Life. Sci. 2014, 347, 576–588. DOI: 10.1002/ardp.201400082.
  • Abdelrazek, F. M.; Metz, P.; Kataeva, O.; Jager, A.; El- Mahrouky, S. F. Synthesis and Molluscicidal Activity of New Chromene and Pyrano[2,3-c]Pyrazole Derivatives. Arch. Pharm. Chem. Life. Sci. 2007, 340, 543–548. DOI: 10.1002/ardp.200700157.
  • Tanaka, J. C.; da Silva, C. C.; Ferreira, I. C.; Machado, G. M.; Leon, L. L.; de Oliveira, A. J. Antileishmanial Activity of Indole Alkaloids from Aspidosperma ramiflorum. Phytomedicine 2007, 14, 377–380. DOI: 10.1016/j.phymed.2006.09.002.
  • El-Agrody, A. M.; Fouda, A. M.; Al-Dies, A. A. M. Studies on the Synthesis, in Vitro Antitumor Activity of 4H-Benzo[h]Chromene, 7H-Benzo[h]Chromene[2,3-d]Pyrimidine Derivatives and Structure–Activity Relationships of the 2-,3- and 2,3-Positions. Med. Chem. Res. 2014, 23, 3187–3199. DOI: 10.1007/s00044-013-0904-x.
  • Nareshkumar, J.; Jiayi, X.; Ramesh, M. K.; Fuyong, D.; Guo, J.-Z.; Emmanuel, P.; Muh-Tsann, L.; Amy, M.; George, A.; Michael, R.; et al. Identification and Structure − Activity Relationships of Chromene-Derived Selective Estrogen Receptor Modulators for Treatment of Postmenopausal Symptoms. J. Med. Chem. 2009, 52, 7544–7569. DOI: 10.1021/jm900146e.
  • Farag, A. A.; Abd-Alrahman, S. N.; Ahmed, G. F.; Ammar, R. M.; Ammar, Y. A.; Abbas, S. Y. Synthesis of Some Azoles Incorporating a Sulfonamide Moiety as Anticonvulsant Agents. Arch. Pharm. Pharm. Med. Chem. 2012, 345, 703–712. DOI: 10.1002/ardp.201200014.
  • Bruhlmann, C.; Ooms, F.; Carrupt, P.; Testa, B.; Catto, M.; Leonetti, F.; Altomare, C.; Carotti, A. Coumarins Derivatives as Dual Inhibitors of Acetylcholinesterase and Monoamine Oxidase. J. Med. Chem. 2001, 44, 3195–3198. DOI: 10.1021/jm010894d.
  • Kesten, S. R.; Heffner, T. G.; Johnson, S. J.; Pugsley, T. A.; Wright, J. L.; Wise, D. L. Design, Synthesis, and Evaluation of Chromen-2-Ones as Potent and Selective Human Dopamine D4 Antagonists. J. Med. Chem. 1999, 42, 3718–3725. DOI: 10.1021/jm990266k.
  • Lee, K.-S.; Khil, L.-Y.; Chae, S.-H.; Kim, D.; Lee, B.-H.; Hwang, G.-S.; Moon, C.-H.; Chang, T.-S.; Moon, C.-K. Effects of DK-002, a Synthesized (6aS,Cis)-9,10-Dimethoxy-7,11b-Dihydro-Indeno[2,1-c]Chromene-3,6a-Diol, on Platelet Activity. Life Sci. 2006, 78, 1091–1097. DOI: 10.1016/j.lfs.2005.06.017.
  • Sashidhara, K. V.; Kumar, M.; Modukuri, R. K.; Srivastava, A.; Puri, A. Discovery and Synthesis of Novel Substituted Benzocoumarins as Orally Active Lipid Modulating Agents. Bioorg. Med. Chem. Lett. 2011, 21, 6709–6713. DOI: 10.1016/j.bmcl.2011.09.053.
  • El-Sayed, A. T.; Ibrahim, M. A. Synthesis and Antimicrobial Activity of Chromone-Linked 2-Pyridone Fused with 1,2,4-Triazoles, 1,2,4-Triazines and 1,2,4-Triazepines Ring Systems. J. Braz. Chem. Soc. 2010, 21, 1007–1016. DOI: 10.1590/S0103-50532010000600010.
  • Kasibhatla, S.; Gourdeau, H.; Meerovitch, K.; Drewe, J.; Reddy, S.; Qiu, L.; Zhang, H.; Bergeron, F.; Bouffard, D.; Yang, Q.; et al. Discovery and Mechanism of Action of a Novel Series of Apoptosis Inducers with Potential Vascular Targeting Activity. Mol. Cancer Ther. 2004, 3, 1365–1374.
  • Hiramoto, K.; Nasuhara, A.; Michikoshi, K.; Kato, T.; Kikugawa, K. DNA Strand-Breaking Activity and Mutagenicity of 2,3-Dihydro-3,5-Dihydroxy-6-Methyl-4H-Pyran-4-One (DDMP), a Maillard Reaction Product of Glucose and Glycine. Mutat. Res. 1997, 395, 47–56. DOI: 10.1016/S1383-5718(97)00141-1.
  • Aaron, J.-J.; Efremova Aaron, S. Purines, Pyrimidines, and Nucleotides. Encyclop. Analytic. Sci. (Third Edition) 2019, 432–444.
  • Aly, A. A.; Ramadan, M.; Mohamed, A. M.; Ishak, E. A. Thieno[2,3‐d]Pyrimidines in the Synthesis of New Fused Heterocyclic Compounds of Prospective Antitumor and Antioxidant Agents (Part II). J. Heterocycl. Chem. 2012, 49, 1009–1018. DOI: 10.1002/jhet.843.
  • Fischer, G. Recent Progress in 1,2,4-Triazolo[1,5-a]Pyrimidine Chemistry. Adv. Heterocycl. Chem. 2007, 95, 143–219. DOI: 10.1016/S0065-2725(07)95003-5.
  • Gujjar, R.; Marwaha, A.; El Mazouni, F.; White, J.; White, K. L.; Creason, S.; Shackleford, D. M.; Baldwin, J.; Charman, W. N.; Buckner, F. S.; et al. Identification of a Metabolically Stable Triazolopyrimidine-Based Dihydroorotate Dehydrogenase Inhibitor with Antimalarial Activity in Mice. J. Med. Chem. 2009, 52, 1864–1872. DOI: 10.1021/jm801343r.
  • Chen, Q.; Zhu, X. L.; Jiang, L. L.; Liu, Z. M.; Yang, G. F. Synthesis, Antifungal Activity and CoMFA Analysis of Novel 1,2,4-Triazolo[1,5-a]Pyrimidine Derivatives. Eur. J. Med. Chem. 2008, 43, 595–603. DOI: 10.1016/j.ejmech.2007.04.021.
  • Yu, W.; Goddard, C.; Clearfield, E.; Mills, C.; Xiao, T.; Guo, H.; Morrey, J. D.; Motter, N. E.; Zhao, K.; Block, T. M.; et al. Design, Synthesis, and Biological Evaluation of Triazolo-Pyrimidine Derivatives as Novel Inhibitors of Hepatitis B Virus Surface Antigen (HBsAg) Secretion. J. Med. Chem. 2011, 54, 5660–5670. DOI: 10.1021/jm200696v.
  • El-Gendy, M. M. A.; Shaaban, M.; Shaaban, K. A.; El-Bondkly, A. M.; Laatsch, H. Essramycin: A First Triazolopyrimidine Antibiotic Isolated from Nature. J. Antibiot. 2008, 61, 149–157. DOI: 10.1038/ja.2008.124.
  • Allen, J. G.; Bourbeau, M. P.; Wohlhieter, G. E.; Bartberger, M. D.; Michelsen, K.; Hungate, R.; Gadwood, R. C.; Gaston, R. D.; Evans, B.; Mann, L. W.; et al. Discovery and Optimization of Chromenotriazolo Pyrimidines as Potent Inhibitors of the Mouse Double Minute 2 − Tumor Protein 53 Protein − Protein Interaction. J. Med. Chem. 2009, 52, 7044–7053. DOI: 10.1021/jm900681h.
  • Lakomska, I.; Wojtczak, A.; Sitkowski, J.; Kozerski, L.; Szlyk, E. Platinum(IV) Complexes with Purine Analogs. Studies of Molecular Structure and Antiproliferative Activity in Vitro. Polyhedron 2008, 27, 2765–2770. DOI: 10.1016/j.poly.2008.05.032.
  • Madkour, H. M. F.; El-Hashash, M. A. E.-A. M.; Salem, M. S.; Mahmoud, A.-S. O. A.; Al Kahraman, Y. M. S. A. Design, Synthesis, and in Vitro Antileishmanial and Antitumor Activities of New Tetrahydroquinolines. J. Heterocycl. Chem. 2018, 55, 391–401. DOI: 10.1002/jhet.3046.
  • Madkour, H. M. F.; El-Hashash, M. A. M.; Salem, M. S.; Mahmoud, A. O. A. Synthesis, Antileishmanial and Cytotoxicity Activities of Fused and Nonfused Tetrahydroquinoline Derivatives. Res. Chem. Intermed. 2018, 44, 3349–3364. DOI: 10.1007/s11164-018-3311-6.
  • Mahmoud, M. R.; El-Shahawi, M. M.; Abu El-Azm, F. S.; Abdeen, M. Synthesis and Antimicrobial Activity of Polyfunctionally Substituted Heterocyclic Compounds Derived from 5-Cinnamoylamino-2-Cyanomethyl-1,3,4-Thiadiazole. J. Heterocycl. Chem. 2017, 54, 2352–2359. DOI: 10.1002/jhet.2824.
  • Ali, K. A.; Abdel Hafez, N. A.; Elsayed, M. A.; El-Shahawi, M. M.; El-Hallouty, S. M.; Amr, A. E. Synthesis, Anticancer Screening and Molecular Docking Studies of New Heterocycles with Trimethoxyphenyl Scaffold as Combretastatin Analogues. Mini Rev. Med. Chem. 2018, 18, 717–727. DOI: 10.2174/1389557517666170425104241.
  • Hekal, M. H.; Abu El-Azm, F. S. M. Efficient MW-Assisted Synthesis of Some New Isoquinolinone Derivatives with in Vitro Antitumor Activity. J. Heterocycl. Chem. 2017, 54, 3056–3064. DOI: 10.1002/jhet.2916.
  • Mahmoud, M. R.; Abu El-Azm, F. S. M.; Ismail, M. F.; Hekal, M. H.; Ali, Y. M. Synthesis and Antitumor Evaluation of Novel Tetrahydrobenzo[4′,5′] Thieno[3′,2′:5,6]Pyrimido[1,2- b] Isoquinoline Derivatives. Synth. Comm. 2018, 48, 428–438. DOI: 10.1080/00397911.2017.1406520.
  • Hekal, M. H.; Abu El-Azm, F. S. M. New Potential Antitumor Quinazolinones Derived from Dynamic 2-Undecyl Benzoxazinone: Synthesis and Cytotoxic Evaluation. Synth. Comm. 2018, 48, 2391–2402. DOI: 10.1080/00397911.2018.1490433.
  • Madkour, H. M. F.; Afify, A. A. E.; Elsayed, G. A.; Salem, M. S. Synthetic Utility of Enaminonitrile Moiety in Heterocyclic Synthesis. Bulg. Chem. Comm. 2008, 40, 147–159.
  • Shaterian, H. R.; Mohammadnia, M. Mild Preparation of 2-Amio-3-Cyano-4-Aryl-4H-Benzo[h]Chromenes and 2-Amino-3-Cyano-1-Aryl-1H-Benzo[f]Chromenes under Solvent-Free Conditions, Catalyzed by Recyclable Basic Ionic Liquids. Res. Chem. Intermed. 2015, 41, 3101–3113.
  • Shinde, S.; Damate, S.; Morbale, S.; Patil, M.; Patil, S. S. Aegle Marmelos in Heterocyclization: Greener, Highly Efficient, One-Pot Three-Component Protocol for the Synthesis of Highly Functionalized 4H-Benzochromenes and 4H-Chromenes. RSC Adv. 2017, 7, 7315–7328. DOI: 10.1039/C6RA28779D.
  • Kandeel, M. M.; Kamal, M. A.; Eman, K. A.; Elshemy, A. H. Synthesis of Novel Chromenes as Cytotoxic Agents. Der. Pharma. Chemica. 2012, 4, 1653–1661. DOI: 10.1002/chin.201329150.
  • Hazrathoseyni, A.; Seyedi, S. M.; Eshghi, H.; Shiri, A.; Saadatmandzadeh, M.; Berenji, A. R. Synthesis, Characterization, and Docking Evaluations of New Derivatives of Pyrimido[4,5‐c]Pyridazine as Potential Human AKT1 Inhibitors. J. Heterocycl. Chem. 2016, 53, 135–143. DOI: 10.1002/jhet.2296.
  • Mahmoud, M. R.; Abu El-Azm, F. S. M.; Ali, A. T.; Ali, Y. M. Design, Synthesis, and Antimicrobial Evaluation of Novel Thienopyrimidines and Triazolothienopyrimidines. Synth. Comm. 2015, 45, 982–992. DOI: 10.1080/00397911.2014.999340.
  • El-Gamal, K. M. Synthesis and Antimicrobial Evaluation of Polyfunctionally Heterocyclic Compounds Bearing Quinoline Moiety. Org. Chem.: Curr. Res. 2016, 5, 168–175.
  • Hekal, M. H.; Abu El-Azm, F. S. M.; Atta‐Allah, S. R. Ecofriendly and Highly Efficient Microwave-Induced Synthesis of Novel Quinazolinone-Undecyl Hybrids with in Vitro Antitumor Activity. Synth. Commun. 2019, 49, 2630–2641. DOI: 10.1080/00397911.2019.1637001.
  • Messaäd, M.; Chabchoub, F.; Salem, M. Action of Primary Amines and Hydroxylamine on Ethoxymethyleneaminonaphtopyranes. Synthesis of New Naphthopyrano[2,3-d]Pyrimidines Derivatives. Heterocycl. Commun. 2005, 11, 139–144.
  • Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Meth. 1983, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4.
  • Denizot, F.; Lang, R. Rapid Colorimetric Assay for Cell Growth and Survival: Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. J. Immunol. Meth. 1986, 89, 271–277. DOI: 10.1016/0022-1759(86)90368-6.
  • Mauceri, H. J.; Hanna, N. N.; Beckett, M. A.; Gorski, D. H.; Staba, M.-J.; Stellato, K. A.; Bigelow, K.; Heimann, R.; Gately, S.; Dhanabal, M.; et al. Combined Effects of Angiostatin and Ionizing Radiation in Antitumour Therapy. Nature 1998, 394, 287–291. DOI: 10.1038/28412.
  • MOE 2014 Molecular Operating Environment (MOE) software; Chemical Computing Group Inc. http://www.chemcomp.com. (accessed April 2014).
  •  Dassault Systèmes BIOVIA, Discovery Studio, 4.0, San Diego: Dassault Systèmes, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.